Accelerated Stochastic Block Coordinate Descent with Optimal Sampling

Total Page:16

File Type:pdf, Size:1020Kb

Accelerated Stochastic Block Coordinate Descent with Optimal Sampling Accelerated Stochastic Block Coordinate Descent with Optimal Sampling Aston Zhang Quanquan Gu Dept. of Computer Science Dept. of Systems and Information Engineering University of Illinois at Urbana-Champaign University of Virginia IL, USA 61801 VA, USA 22904 [email protected] [email protected] ABSTRACT where Gj = fk1; : : : ; kjGj jg and 1 ≤ j ≤ m. The fact that R(w) We study the composite minimization problem where the objective is block separable is equivalent to function is the sum of two convex functions: one is the sum of a fi- m X nite number of strongly convex and smooth functions, and the other R(w) = rj (wGj ): (1.2) is a general convex function that is non-differentiable. Specifically, j=1 we consider the case where the non-differentiable function is block The above problem is common in data mining and machine separable and admits a simple proximal mapping for each block. learning, such as the regularized empirical risk minimization, This type of composite optimization is common in many data min- where F (w) is the empirical loss function averaged over the train- ing and machine learning problems, and can be solved by block co- ing data sets, and R(w) is a regularization term. For example, ordinate descent algorithms. We propose an accelerated stochastic suppose that for a data mining problem there are n instances in a block coordinate descent (ASBCD) algorithm, which incorporates training data set f(x ; y ); (x ; y );:::; (x ; y )g. By choosing the incrementally averaged partial derivative into the stochastic par- 1 1 2 2 n n the squared loss f (w) = (hw; x i − y )2=2 and R(w) = 0, a tial derivative and exploits optimal sampling. We prove that AS- i i i least square regression is obtained. If R(w) is chosen to be the BCD attains a linear rate of convergence. In contrast to uniform sum of the absolute value of each coordinate in w, it becomes a sampling, we reveal that the optimal non-uniform sampling can be lasso regression [46]. In general, the problem in (1.1) can be ap- employed to achieve a lower iteration complexity. Experimental proximately solved by proximal gradient descent algorithms [32] results on different large-scale real data sets support our theory. and proximal coordinate descent algorithms [23]. Coordinate descent algorithms have received increasing atten- CCS Concepts tion in the past decade in data mining and machine learning due •Information systems ! Data mining; •Computing methodo- to their successful applications in high dimensional problems with logies ! Machine learning; structural regularizers [12, 11, 28, 2, 47]. Randomized block co- ordinate descent (RBCD) [31, 36, 26, 39, 4, 14, 21] is a special block coordinate descent algorithm. At each iteration, it updates a Keywords block of coordinates in vector w based on evaluation of a random Stochastic block coordinate descent; Sampling feature subset from the entire training data instances. The iteration complexity of RBCD was established and extended to composite minimization problems [31, 36, 26]. RBCD can choose a con- 1. INTRODUCTION stant step size and converge at the same rate as gradient descent We consider the problem of minimizing a composite function, algorithms [31, 36, 26]. Compared with gradient descent, the per- which is the sum of two convex functions: iteration time complexity of RBCD is much lower. This is because ∗ RBCD computes a partial derivative restricted to only a single co- w = argmin P (w) = F (w) + R(w); d (1.1) ordinate block at each iteration and updates just a single coordinate w2R block of vector w. However, it is still computationally expensive −1 Pn where F (w) = n i=1 fi(w) is a sum of a finite number of because at each iteration it requires evaluation of the gradient for strongly convex and smooth functions, and R(w) is a block sep- all the n component functions fi: the per-iteration computational arable non-differential function. To explain block separability, let complexity scales linearly with the training data set size n. fG1;:::; Gkg be a partition of all the d coordinates where Gj is In view of this, stochastic block coordinate descent was proposed > a block of coordinates. A subvector wG is [wk ; : : : ; wk ] , recently [8, 51, 48, 35]. Such algorithms compute the stochastic j 1 jGj j partial derivative restricted to one coordinate block with respect Permission to make digital or hard copies of all or part of this work for personal or to one component function, rather than the full partial derivative classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation with respect to all the component functions. Essentially, these al- on the first page. Copyrights for components of this work owned by others than the gorithms employ sampling of both features and data instances at author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or each iteration. However, they can only achieve a sublinear rate of republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. convergence. KDD’16, August 13–17, 2016, San Francisco, CA, USA We propose an algorithm for stochastic block coordinate descent using optimal sampling, namely accelerated stochastic block co- c 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM. ISBN 978-1-4503-4232-2/16/08. $15.00 ordinate descent with optimal sampling (ASBCD). On one hand, DOI: http://dx.doi.org/10.1145/2939672.2939819 ASBCD employs a simple gradient update with optimal non- Algorithm 1 ASBCD: Accelerated Stochastic Block Coordinate Pn (t−1) term k=1 rGj fk(φk ) is efficiently updated by subtracting Descent with Optimal Sampling (t−2) (t−1) rGj fi(φi ) from itself while adding rGj fi(φi ) to itself. 1: Inputs: step size η and sampling probability set P = fp1; : : : ; png of component functions f1; : : : ; fn REMARK 2.1. For many empirical risk minimization problems (0) (0) d with each training data instance (xi; yi) and a loss function `, the 2: Initialize: φi = w 2 R 3: for t = 1; 2;::: do gradient of fi(w) with respect to w is a multiple of xi: rfi(w) = 0 4: Sample a component function index i from f1; : : : ; ng at ` (hw; xii; yi)xi. Therefore, rfi(φi) can be compactly saved in memory by only saving scalars `0(hφ ; x i; y ) with the same space probability pi 2 P with replacement i i i (t) (t−1) cost as those of many other related algorithms MRBCD, SVRG, 5: φi w 6: Sample a coordinate block index j from f1; : : : ; mg uni- SAGA, SDCA, and SAG described in Section 5. formly at random with replacement (t) (t−1) −1 (t) REMARK 2.2. The sampling probability of component func- 7: w prox w − η (npi) rG fi(φ ) − Gj η;j Gj j i tions fi in Line 4 of Algorithm 1 is according to a given prob- −1 (t−1) −1 Pn (t−1) (npi) rGj fi(φi ) + n k=1 rGj fk(φk ) ability set P = fp1; : : : ; png. The uniform sampling scheme em- 8: w(t) w(t−1) ployed by stochastic block coordinate descent methods fits under nGj nGj this more generalized sampling framework as a special case, where 9: end for pi = 1=n. We reveal that the optimal non-uniform sampling can be employed to lower the iteration complexity in Section 3. uniform sampling, which is in sharp contrast to the aforementioned When taking the expectation of the squared gap between the it- stochastic block coordinate descent algorithms based on uniform (t) ∗ erate w and the optimal solution w in (1.1) with respect to sampling. On the other hand, we incorporate the incrementally the stochastic coordinate block index, the obtained upper bound averaged partial derivative into the stochastic partial derivative to does not depend on such an index or the proximal operator. This achieve a linear rate of convergence rather than a sublinear rate. property may lead to additional algorithmic development and here To be specific, given error and number of coordinate blocks m, it is important for deriving a linear rate of convergence for Al- for strongly convex f (w) with the convexity parameter µ and the i gorithm 1. We prove the rate of convergence bound in Appendix A Lipschitz continuous gradient constant Li (LM = max Li), the i after presenting and discussing the main theory in Section 3. iteration complexity of ASBCD is n 1 X Li 1 3. MAIN THEORY O m + n log : n µ In this section, we present and discuss the main theory of our i=1 proposed algorithm (Algorithm 1). The proof of the main theory is Notation. Here we define and describe the notation used through presented in the appendix. th this paper. Let wk be the k element of a vector w = We begin with the following assumptions on F (w) and R(w) > d Pd 21=2 [w1; : : : ; wd] 2 R . We use kwk = kwk2 = k=1 wk to in the composite objective optimization problem as characterized Pd denote the `2 norm of a vector w and kwk = jwkj. The in (1.1). These assumptions are mild and can be verified in many 1 k=1 regularized empirical risk minimization problems in data mining subvector of w excluding wGj is denoted by wnGj . The simple proximal mapping for each coordinate block, also known as the and machine learning.
Recommended publications
  • A Generic Coordinate Descent Solver for Nonsmooth Convex Optimization Olivier Fercoq
    A generic coordinate descent solver for nonsmooth convex optimization Olivier Fercoq To cite this version: Olivier Fercoq. A generic coordinate descent solver for nonsmooth convex optimization. Optimization Methods and Software, Taylor & Francis, 2019, pp.1-21. 10.1080/10556788.2019.1658758. hal- 01941152v2 HAL Id: hal-01941152 https://hal.archives-ouvertes.fr/hal-01941152v2 Submitted on 26 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A generic coordinate descent solver for nonsmooth convex optimization Olivier Fercoq LTCI, T´el´ecom ParisTech, Universit´eParis-Saclay, 46 rue Barrault, 75634 Paris Cedex 13, France ARTICLE HISTORY Compiled September 26, 2019 ABSTRACT We present a generic coordinate descent solver for the minimization of a nonsmooth convex ob- jective with structure. The method can deal in particular with problems with linear constraints. The implementation makes use of efficient residual updates and automatically determines which dual variables should be duplicated. A list of basic functional atoms is pre-compiled for effi- ciency and a modelling language in Python allows the user to combine them at run time. So, the algorithm can be used to solve a large variety of problems including Lasso, sparse multinomial logistic regression, linear and quadratic programs.
    [Show full text]
  • 12. Coordinate Descent Methods
    EE 546, Univ of Washington, Spring 2014 12. Coordinate descent methods theoretical justifications • randomized coordinate descent method • minimizing composite objectives • accelerated coordinate descent method • Coordinate descent methods 12–1 Notations consider smooth unconstrained minimization problem: minimize f(x) x RN ∈ n coordinate blocks: x =(x ,...,x ) with x RNi and N = N • 1 n i ∈ i=1 i more generally, partition with a permutation matrix: U =[PU1 Un] • ··· n T xi = Ui x, x = Uixi i=1 X blocks of gradient: • f(x) = U T f(x) ∇i i ∇ coordinate update: • x+ = x tU f(x) − i∇i Coordinate descent methods 12–2 (Block) coordinate descent choose x(0) Rn, and iterate for k =0, 1, 2,... ∈ 1. choose coordinate i(k) 2. update x(k+1) = x(k) t U f(x(k)) − k ik∇ik among the first schemes for solving smooth unconstrained problems • cyclic or round-Robin: difficult to analyze convergence • mostly local convergence results for particular classes of problems • does it really work (better than full gradient method)? • Coordinate descent methods 12–3 Steepest coordinate descent choose x(0) Rn, and iterate for k =0, 1, 2,... ∈ (k) 1. choose i(k) = argmax if(x ) 2 i 1,...,n k∇ k ∈{ } 2. update x(k+1) = x(k) t U f(x(k)) − k i(k)∇i(k) assumptions f(x) is block-wise Lipschitz continuous • ∇ f(x + U v) f(x) L v , i =1,...,n k∇i i −∇i k2 ≤ ik k2 f has bounded sub-level set, in particular, define • ⋆ R(x) = max max y x 2 : f(y) f(x) y x⋆ X⋆ k − k ≤ ∈ Coordinate descent methods 12–4 Analysis for constant step size quadratic upper bound due to block coordinate-wise
    [Show full text]
  • Process Optimization
    Process Optimization Mathematical Programming and Optimization of Multi-Plant Operations and Process Design Ralph W. Pike Director, Minerals Processing Research Institute Horton Professor of Chemical Engineering Louisiana State University Department of Chemical Engineering, Lamar University, April, 10, 2007 Process Optimization • Typical Industrial Problems • Mathematical Programming Software • Mathematical Basis for Optimization • Lagrange Multipliers and the Simplex Algorithm • Generalized Reduced Gradient Algorithm • On-Line Optimization • Mixed Integer Programming and the Branch and Bound Algorithm • Chemical Production Complex Optimization New Results • Using one computer language to write and run a program in another language • Cumulative probability distribution instead of an optimal point using Monte Carlo simulation for a multi-criteria, mixed integer nonlinear programming problem • Global optimization Design vs. Operations • Optimal Design −Uses flowsheet simulators and SQP – Heuristics for a design, a superstructure, an optimal design • Optimal Operations – On-line optimization – Plant optimal scheduling – Corporate supply chain optimization Plant Problem Size Contact Alkylation Ethylene 3,200 TPD 15,000 BPD 200 million lb/yr Units 14 76 ~200 Streams 35 110 ~4,000 Constraints Equality 761 1,579 ~400,000 Inequality 28 50 ~10,000 Variables Measured 43 125 ~300 Unmeasured 732 1,509 ~10,000 Parameters 11 64 ~100 Optimization Programming Languages • GAMS - General Algebraic Modeling System • LINDO - Widely used in business applications
    [Show full text]
  • The Gradient Sampling Methodology
    The Gradient Sampling Methodology James V. Burke∗ Frank E. Curtisy Adrian S. Lewisz Michael L. Overtonx January 14, 2019 1 Introduction in particular, this leads to calling the negative gra- dient, namely, −∇f(x), the direction of steepest de- The principal methodology for minimizing a smooth scent for f at x. However, when f is not differentiable function is the steepest descent (gradient) method. near x, one finds that following the negative gradient One way to extend this methodology to the minimiza- direction might offer only a small amount of decrease tion of a nonsmooth function involves approximating in f; indeed, obtaining decrease from x along −∇f(x) subdifferentials through the random sampling of gra- may be possible only with a very small stepsize. The dients. This approach, known as gradient sampling GS methodology is based on the idea of stabilizing (GS), gained a solid theoretical foundation about a this definition of steepest descent by instead finding decade ago [BLO05, Kiw07], and has developed into a a direction to approximately solve comprehensive methodology for handling nonsmooth, potentially nonconvex functions in the context of op- min max gT d; (2) kdk2≤1 g2@¯ f(x) timization algorithms. In this article, we summarize the foundations of the GS methodology, provide an ¯ where @f(x) is the -subdifferential of f at x [Gol77]. overview of the enhancements and extensions to it To understand the context of this idea, recall that that have developed over the past decade, and high- the (Clarke) subdifferential of a locally Lipschitz f light some interesting open questions related to GS.
    [Show full text]
  • Decomposable Submodular Function Minimization: Discrete And
    Decomposable Submodular Function Minimization: Discrete and Continuous Alina Ene∗ Huy L. Nguy˜ên† László A. Végh‡ March 7, 2017 Abstract This paper investigates connections between discrete and continuous approaches for decomposable submodular function minimization. We provide improved running time estimates for the state-of-the-art continuous algorithms for the problem using combinatorial arguments. We also provide a systematic experimental comparison of the two types of methods, based on a clear distinction between level-0 and level-1 algorithms. 1 Introduction Submodular functions arise in a wide range of applications: graph theory, optimization, economics, game theory, to name a few. A function f : 2V R on a ground set V is submodular if f(X)+ f(Y ) f(X Y )+ f(X Y ) for all sets X, Y V . Submodularity→ can also be interpreted as a decreasing marginals≥ property.∩ ∪ ⊆ There has been significant interest in submodular optimization in the machine learning and computer vision communities. The submodular function minimization (SFM) problem arises in problems in image segmenta- tion or MAP inference tasks in Markov Random Fields. Landmark results in combinatorial optimization give polynomial-time exact algorithms for SFM. However, the high-degree polynomial dependence in the running time is prohibitive for large-scale problem instances. The main objective in this context is to develop fast and scalable SFM algorithms. Instead of minimizing arbitrary submodular functions, several recent papers aim to exploit special structural properties of submodular functions arising in practical applications. A popular model is decomposable sub- modular functions: these can be written as sums of several “simple” submodular functions defined on small arXiv:1703.01830v1 [cs.LG] 6 Mar 2017 supports.
    [Show full text]
  • Arxiv:1706.05795V4 [Math.OC] 4 Nov 2018
    BCOL RESEARCH REPORT 17.02 Industrial Engineering & Operations Research University of California, Berkeley, CA 94720{1777 SIMPLEX QP-BASED METHODS FOR MINIMIZING A CONIC QUADRATIC OBJECTIVE OVER POLYHEDRA ALPER ATAMTURK¨ AND ANDRES´ GOMEZ´ Abstract. We consider minimizing a conic quadratic objective over a polyhe- dron. Such problems arise in parametric value-at-risk minimization, portfolio optimization, and robust optimization with ellipsoidal objective uncertainty; and they can be solved by polynomial interior point algorithms for conic qua- dratic optimization. However, interior point algorithms are not well-suited for branch-and-bound algorithms for the discrete counterparts of these problems due to the lack of effective warm starts necessary for the efficient solution of convex relaxations repeatedly at the nodes of the search tree. In order to overcome this shortcoming, we reformulate the problem us- ing the perspective of the quadratic function. The perspective reformulation lends itself to simple coordinate descent and bisection algorithms utilizing the simplex method for quadratic programming, which makes the solution meth- ods amenable to warm starts and suitable for branch-and-bound algorithms. We test the simplex-based quadratic programming algorithms to solve con- vex as well as discrete instances and compare them with the state-of-the-art approaches. The computational experiments indicate that the proposed al- gorithms scale much better than interior point algorithms and return higher precision solutions. In our experiments, for large convex instances, they pro- vide up to 22x speed-up. For smaller discrete instances, the speed-up is about 13x over a barrier-based branch-and-bound algorithm and 6x over the LP- based branch-and-bound algorithm with extended formulations.
    [Show full text]
  • A New Algorithm of Nonlinear Conjugate Gradient Method with Strong Convergence*
    Volume 27, N. 1, pp. 93–106, 2008 Copyright © 2008 SBMAC ISSN 0101-8205 www.scielo.br/cam A new algorithm of nonlinear conjugate gradient method with strong convergence* ZHEN-JUN SHI1,2 and JINHUA GUO2 1College of Operations Research and Management, Qufu Normal University Rizhao, Sahndong 276826, P.R. China 2Department of Computer and Information Science, University of Michigan Dearborn, Michigan 48128-1491, USA E-mails: [email protected]; [email protected] / [email protected] Abstract. The nonlinear conjugate gradient method is a very useful technique for solving large scale minimization problems and has wide applications in many fields. In this paper, we present a new algorithm of nonlinear conjugate gradient method with strong convergence for unconstrained minimization problems. The new algorithm can generate an adequate trust region radius automatically at each iteration and has global convergence and linear convergence rate under some mild conditions. Numerical results show that the new algorithm is efficient in practical computation and superior to other similar methods in many situations. Mathematical subject classification: 90C30, 65K05, 49M37. Key words: unconstrained optimization, nonlinear conjugate gradient method, global conver- gence, linear convergence rate. 1 Introduction Consider an unconstrained minimization problem min f (x), x ∈ Rn, (1) where Rn is an n-dimensional Euclidean space and f : Rn −→ R is a continu- ously differentiable function. #724/07. Received: 10/V/07. Accepted: 24/IX/07. *The work was supported in part by NSF CNS-0521142, USA. 94 A NEW ALGORITHM OF NONLINEAR CONJUGATE GRADIENT METHOD When n is very large (for example, n > 106) the related problem is called large scale minimization problem.
    [Show full text]
  • Research Article Stochastic Block-Coordinate Gradient Projection Algorithms for Submodular Maximization
    Hindawi Complexity Volume 2018, Article ID 2609471, 11 pages https://doi.org/10.1155/2018/2609471 Research Article Stochastic Block-Coordinate Gradient Projection Algorithms for Submodular Maximization Zhigang Li,1 Mingchuan Zhang ,2 Junlong Zhu ,2 Ruijuan Zheng ,2 Qikun Zhang ,1 and Qingtao Wu 2 1 School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China 2Information Engineering College, Henan University of Science and Technology, Luoyang, 471023, China Correspondence should be addressed to Mingchuan Zhang; zhang [email protected] Received 25 May 2018; Accepted 26 November 2018; Published 5 December 2018 Academic Editor: Mahardhika Pratama Copyright © 2018 Zhigang Li et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider a stochastic continuous submodular huge-scale optimization problem, which arises naturally in many applications such as machine learning. Due to high-dimensional data, the computation of the whole gradient vector can become prohibitively expensive. To reduce the complexity and memory requirements, we propose a stochastic block-coordinate gradient projection algorithm for maximizing continuous submodular functions, which chooses a random subset of gradient vector and updates the estimates along the positive gradient direction. We prove that the estimates of all nodes generated by the algorithm converge to ∗ some stationary points with probability 1. Moreover, we show that the proposed algorithm achieves the tight ((� /2)� − �) 2 min approximation guarantee afer �(1/� ) iterations for DR-submodular functions by choosing appropriate step sizes. Furthermore, ((�2/(1 + �2))� �∗ − �) �(1/�2) we also show that the algorithm achieves the tight min approximation guarantee afer iterations for weakly DR-submodular functions with parameter � by choosing diminishing step sizes.
    [Show full text]
  • A Hybrid Method of Combinatorial Search and Coordinate Descent For
    A Hybrid Method of Combinatorial Search and Coordinate Descent for Discrete Optimization Ganzhao Yuan [email protected] School of Data and Computer Science, Sun Yat-sen University (SYSU), P.R. China Li Shen [email protected] Tencent AI Lab, Shenzhen, P.R. China Wei-Shi Zheng [email protected] School of Data and Computer Science, Sun Yat-sen University (SYSU), P.R. China Editor: Abstract Discrete optimization is a central problem in mathematical optimization with a broad range of applications, among which binary optimization and sparse optimization are two common ones. However, these problems are NP-hard and thus difficult to solve in general. Combinatorial search methods such as branch-and-bound and exhaustive search find the global optimal solution but are confined to small-sized problems, while coordinate descent methods such as coordinate gradient descent are efficient but often suffer from poor local minima. In this paper, we consider a hybrid method that combines the effectiveness of combinatorial search and the efficiency of coordinate descent. Specifically, we consider random strategy or/and greedy strategy to select a subset of coordinates as the working set, and then perform global combinatorial search over the working set based on the original objective function. In addition, we provide some optimality analysis and convergence analysis for the proposed method. Our method finds stronger stationary points than existing methods. Finally, we demonstrate the efficacy of our method on some sparse optimization and binary optimization applications. As a result, our method achieves state-of-the-art performance in terms of accuracy. For example, our method generally outperforms the well-known orthogonal matching pursuit method in sparse optimization.
    [Show full text]
  • On the Links Between Probabilistic Graphical Models and Submodular Optimisation Senanayak Sesh Kumar Karri
    On the Links between Probabilistic Graphical Models and Submodular Optimisation Senanayak Sesh Kumar Karri To cite this version: Senanayak Sesh Kumar Karri. On the Links between Probabilistic Graphical Models and Submodular Optimisation. Machine Learning [cs.LG]. Université Paris sciences et lettres, 2016. English. NNT : 2016PSLEE047. tel-01753810 HAL Id: tel-01753810 https://tel.archives-ouvertes.fr/tel-01753810 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE` DE DOCTORAT de l’Universite´ de recherche Paris Sciences Lettres PSL Research University Prepar´ ee´ a` l’Ecole´ normale superieure´ On the Links between Probabilistic Graphical Models and Submodular Optimisation Liens entre modeles` graphiques probabilistes et optimisation sous-modulaire Ecole´ doctorale n◦386 ECOLE´ DOCTORALE DE SCIENCES MATHEMATIQUES´ DE PARIS CENTRE Specialit´ e´ INFORMATIQUE COMPOSITION DU JURY : M Andreas Krause ETH Zurich, Rapporteur M Nikos Komodakis ENPC Paris, Rapporteur M Francis Bach Inria Paris, Directeur de these` Soutenue par Senanayak Sesh Kumar KARRI le 27.09.2016 M Josef Sivic ENS Paris, Membre du Jury Dirigee´ par Francis BACH M Antonin Chambolle CMAP EP Paris, Membre du Jury M Guillaume Obozinski ENPC Paris, Membre du Jury RESEARCH UNIVERSITY PARIS ÉCOLENORMALE SUPÉRIEURE What is the purpose of life? Proof and Conjecture, ....
    [Show full text]
  • Using a New Nonlinear Gradient Method for Solving Large Scale Convex Optimization Problems with an Application on Arabic Medical Text
    Using a New Nonlinear Gradient Method for Solving Large Scale Convex Optimization Problems with an Application on Arabic Medical Text Jaafar Hammouda*, Ali Eisab, Natalia Dobrenkoa, Natalia Gusarovaa aITMO University, St. Petersburg, Russia *[email protected] bAleppo University, Aleppo, Syria Abstract Gradient methods have applications in multiple fields, including signal processing, image processing, and dynamic systems. In this paper, we present a nonlinear gradient method for solving convex supra-quadratic functions by developing the search direction, that done by hybridizing between the two conjugate coefficients HRM [2] and NHS [1]. The numerical results proved the effectiveness of the presented method by applying it to solve standard problems and reaching the exact solution if the objective function is quadratic convex. Also presented in this article, an application to the problem of named entities in the Arabic medical language, as it proved the stability of the proposed method and its efficiency in terms of execution time. Keywords: Convex optimization; Gradient methods; Named entity recognition; Arabic; e-Health. 1. Introduction Several nonlinear conjugate gradient methods have been presented for solving high-dimensional unconstrained optimization problems which are given as [3]: min f(x) ; x∈Rn (1) To solve problem (1), we start with the following iterative relationship: 푥(푘+1) = 푥푘 + 훼푘 푑푘, 푘 = 0,1,2, (2) where α푘 > 0 is a step size, that is calculated by strong Wolfe-Powell’s conditions [4] 푇 푓(푥푘 + 훼푘푑푘) ≤ 푓(푥푘) + 훿훼푘푔푘 푑푘, (3) 푇 푇 |푔(푥푘 + 훼푘푑푘) 푑푘| ≤ 휎|푔푘 푑푘| where 0 < 훿 < 휎 < 1 푑푘 is the search direction that is computed as follow [3] −푔푘 , if 푘 = 0 (4) 푑푘+1 = { −푔푘+1 + 훽푘푑푘 , if 푘 ≥ 1 Where 푔푘 = 푔(푥푘) = ∇푓(푥푘) represent the gradient vector for 푓(푥) at the point 푥푘 , 훽푘 ∈ ℝ is known as CG coefficient that characterizes different CG methods.
    [Show full text]
  • An Iterated Coordinate Descent Algorithm for Regularized 0/1 Loss Minimization
    An iterated coordinate descent algorithm for regularized 0/1 loss minimization Usman Roshan Department of Computer Science, New Jersey Institute of Technology, [email protected] Abstract. We propose regularization and iterated coordinate descent for better 0/1 loss optimization. The 0/1 loss is less sensitive to outliers than the popular hinge and logistic loss particularly when outliers are misclassified. However, it also suffers from local minima rendering coor- dinate descent ineffective. A popular method to deal with local minima is to perform multiple coordinate descent searches starting from differ- ent random initial solutions. We propose using a less explored approach called iterated local search, where the idea is to continue the search after a slight perturbation to the local minima. This preserves structure in the local minimum and also allows for an overall deeper search compared to random restart alone. Inspired by this we implement an iterated coordi- nate descent algorithm for a regularized 0/1 loss objective. Our algorithm performs a perturbation to the local minima reached at the end of co- ordinate descent, resumes the search from the perturbation until a new minima is reached, and continues in this manner for a specified number of iterations. We show empirically on real data that this leads to a sig- nificant improvement in the 0/1 loss compared to random restarts both on training and test data. We also see that optimizing the regularized 0/1 loss gives lower objective values than optimizing the 0/1 loss alone on training and test data. Our results show that the instability of 0/1 loss is improved by regularization and that iterated coordinate descent gives lower loss values than random restart alone.
    [Show full text]