Differentially Private Stochastic Coordinate Descent Georgios Damaskinos,1* Celestine Mendler-Dunner,¨ 2* Rachid Guerraoui,1 Nikolaos Papandreou,3 Thomas Parnell3 1Ecole´ Polytechnique Fed´ erale´ de Lausanne (EPFL), Switzerland 2University of California, Berkeley 3IBM Research, Zurich georgios.damaskinos@epfl.ch,
[email protected], rachid.guerraoui@epfl.ch, fnpo,
[email protected] Abstract Our goal is to extend SCD with mechanisms that preserve In this paper we tackle the challenge of making the stochastic data privacy, and thus enable the reuse of large engineer- coordinate descent algorithm differentially private. Com- ing efforts invested in SCD (Bradley et al. 2011a; Ioannou, pared to the classical gradient descent algorithm where up- Mendler-Dunner,¨ and Parnell 2019), for privacy-critical use- dates operate on a single model vector and controlled noise cases. In this paper we therefore ask the question: Can SCD addition to this vector suffices to hide critical information maintain its benefits (convergence guarantees, low tuning about individuals, stochastic coordinate descent crucially re- cost) alongside strong privacy guarantees? lies on keeping auxiliary information in memory during train- We employ differential privacy (DP) (Dwork, Roth et al. ing. This auxiliary information provides an additional privacy 2014) as our mathematical definition of privacy. DP provides leak and poses the major challenge addressed in this work. a formal guarantee for the amount of leaked information re- Driven by the insight that under independent noise addition, garding participants in a database, given a strong adversary the consistency of the auxiliary information holds in expect- ation, we present DP-SCD, the first differentially private and the output of a mechanism that processes this database.