bioRxiv preprint doi: https://doi.org/10.1101/281063; this version posted March 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Detection and classification of hard and soft sweeps from unphased genotypes by multilocus genotype identity Alexandre M. Harris1;2, Nandita R. Garud3, Michael DeGiorgio1;4;5;∗ March 7, 2018 1Department of Biology, Pennsylvania State University, University Park, PA 16802, USA 2Program in Molecular, Cellular, and Integrative Biosciences at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA 3Gladstone Institute, University of California, San Francisco, CA, 94158,USA 4Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA 5Institute for CyberScience, Pennsylvania State University, University Park, PA 16802,USA ∗Corresponding author:
[email protected] Keywords: Expected haplotype homozygosity, multilocus genotype, positive selection, hard sweep, soft sweep Running title: Detecting hard and soft sweeps 1 bioRxiv preprint doi: https://doi.org/10.1101/281063; this version posted March 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Positive natural selection can lead to a decrease in genomic diversity at the selected site and at linked sites, producing a characteristic signature of elevated expected haplotype homozygosity. These selective sweeps can be hard or soft. In the case of a hard selective sweep, a single adaptive haplotype rises to high population frequency, whereas in a soft selective sweep, multiple adaptive haplotypes sweep through the population simultaneously, producing distinct patterns of genetic variation in the vicinity of the selected site.