1 Sednan Day = 10.273 Earth Hours (French)

Total Page:16

File Type:pdf, Size:1020Kb

1 Sednan Day = 10.273 Earth Hours (French) Welcome to a scale model of our solar system. Sedna In the model, this circle shows Sedna is a trans-Neptunian object (an object that on average orbits the relative size of the Sun. The farther from the Sun than Neptune) discovered on November 14, distances between panels show the 2003 by Michael Brown, Chad Trujillo and David Rabinowitz. relative distances between solar system Sedna has a very elongated orbit, more like a comet than a planet, French translation of text in Sun at upper left corner of panel. objects. The panels for the Sun, Earth and takes over twelve thousand years just to orbit the Sun once. and other planets are located on the It is composed mostly of ices which for unknown reasons are Keele campus. The object Sedna is so far from the Sun that almost as red as the surface of Mars. The temperature on Sedna it is located at Glendon never gets warmer than -240 C (33 degrees above absolute zero). in this scale model. Because it is the coldest, most distant place known in the solar NASA / JPL - system, Sedna was named after the Inuit goddess of the sea, who Caltech / R. Hurt The false-color image to the right, our The four panels above (moving clockwise from the upper left) repeatedly zoom out to best photo of Sedna to date, was taken is thought to live at the bottom of the frigid arctic ocean. with the Hubble Space Telescope. place Sedna in context. The first panel shows the orbits of the inner planets and Jupiter. The second panel shows that Sedna lies beyond the orbits of Neptune and the The next generation James Webb (French) Space Telescope should provide a Kuiper belt objects. The third panel shows Sedna's full orbit and its location in 2004, somewhat better photo, but Sedna is just shy of its closest approach to the Sun. The final panel shows that Sedna’s elliptical too far away to see much detail. orbit falls inside the inner edge of the spherical, transparent Oort Cloud (a distribution [French] of cold, icy cometary bodies lying at the limits of the Sun's gravitational influence). (French) NASA, ESA, M. Brown (Caltech) 1 Sednan day = 10.273 Earth hours (French) 1 Sednan year = 12,059 Earth years (French) Comparaison de la taille de Sedna avec d'autres objets transneptuniens As seen in the figure at left, Sedna is one of the Discovery images of Sedna. Over three hours’ time, Sedna largest trans-Neptunian objects known in early moved slowly with respect to the background stars. 2009. It is thought to be smaller than Pluto but [French] larger than Pluto’s largest moon Charon. Sedna may someday be classified as a dwarf planet. Other logos here (French) NASA/Lexicon M. Brown (Caltech).
Recommended publications
  • ÉRIS Thèmes De Sa Découverte
    Carmela Di Martine – Juin 2020 ÉRIS Thèmes de sa découverte Astronomie La première prise de cliché de l’astre date du 3 septembre 1954 au Mont Palomar en Californie. Éris a été ensuite photographiée lors d’observations effectuées le 21 octobre 2003, avec le télescope Oschin du Mont Palomar par l’équipe de Mike Brown, Chadwick Trujillo et David Rabinowitz. Mais ce n’est en fait que le 5 janvier 2005 qu’elle fut vraiment découverte, lorsque des photographies du même pan de ciel révélèrent son déplacement. Éris et Dysnomie Sous la désignation provisoire 2003 UB313 est officiellement classé « planète naine » le 24 août 2006 par l’Union astronomique internationale. Après avoir été désignée sous différents noms (Xena, Lila, Perséphone, Érèbe...), le « choix » final de la dénomination d’Éris par l’UAI, le 13 septembre 2006, évoque aussi d’une part les discussions et controverses acharnées entre scientifiques sur la remise en cause de la définition du mot « planète » du fait de sa découverte, et d’autre part, l’apparente diversité des orbites des objets épars de cette zone du Système solaire (au-delà de la ceinture de Kuiper) par rapport aux orbites régulières des planètes plus proches du Soleil (jusqu’à Neptune). Sa désignation scientifique officielle complète est (136199) Éris. Pour les principales caractéristiques d’Éris, lire aussi mon article : « Les planètes » (p. 25-27). Astrologie N’aurait-on pas une vision "patriarcale" d’Éris ? Éris la "semeuse de Discordes"… Éris, "l’Emmerdeuse"… Expressions très, trop facilement accordées aussi aux femmes par les hommes… Car des questions se posent tout de même… Pourquoi n’est-ce pas Thétis la « plus Belle » en ce jour de son mariage ? Pourquoi le choix d’Aphrodite embarrasse tant toute l’Assemblé divine qui n’en est pourtant pas habituellement à une guerre près ? Contre toute attente, les thèmes de découvertes d’Éris vont nous dévoiler en effet une toute autre vérité….
    [Show full text]
  • Relatório De Conferência De Produção Intelectual
    Relatório de Conferência de Produção Intelectual Dados Gerais Instituição de Ensino: OBSERVATÓRIO NACIONAL (ON) Programa: ASTRONOMIA (31013015001P9) Ano de Referência: 2017 Produções Intelectuais Produção: A GRAVITATIONAL-WAVE STANDARD SIREN MEASUREMENT OF THE HUBBLE CONSTANT AUTHORS: Instituição de Ensino: OBSERVATÓRIO NACIONAL (ON) Programa: ASTRONOMIA (31013015001P9) Ano da Publicação: 2017 A Produção é vinculada a Trabalho de Conclusão concluído: Não É um dos 5 trabalhos mais relevantes do seu programa: Não Autores Ordem Nome Categoria 1 B. P Abbott Sem Categoria 2 MARCIO ANTONIO GEIMBA MAIA DOCENTE 3 RICARDO LOURENCO CORREIA DOCENTE OGANDO 4 LUIZ ALBERTO NICOLACI DA COSTA PARTICIPANTE EXTERNO Detalhamento Tipo: BIBLIOGRÁFICA Subtipo: ARTIGO EM PERIÓDICO ISSN: 1476-4687 Estrato: - Natureza: Completo ISSN / Título do periódico: (1476-4687) NATURE (ONLINE) Nome da editora: Cidade: Volume: 551 Fascículo: Série: Número da página inicial: Número da página final: Idioma: inglês Divulgação: VÁRIOS URL: Observação: Trata-se de um artigo com mais de 30 autores. Apenas os autores vinculados ao Observatório Nacional foram listados. Este artigo é fruto de uma grande colaboração. 10/01/2019 14:14:50 1 Relatório de Conferência de Produção Intelectual DOI: 10.1038/nature24471 Contexto Área de Concentração: ASTROFISICA Linha de Pesquisa: ASTROFÍSICA EXTRAGALÁCTICA Projeto de Pesquisa: Produção: A MODIFIED COROT DETREND ALGORITHM AND THE DISCOVERY OF A NEW PLANETARY COMPANION Instituição de Ensino: OBSERVATÓRIO NACIONAL (ON) Programa: ASTRONOMIA (31013015001P9) Ano da Publicação: 2017 A Produção é vinculada a Trabalho de Conclusão concluído: Sim É um dos 5 trabalhos mais relevantes do seu programa: Sim Autores Ordem Nome Categoria 1 RODRIGO CARLOS BOUFLEUR DISCENTE 2 MARCELO EMILIO DOCENTE 3 EDUARDO JANOT PACHECO PARTICIPANTE EXTERNO 4 LAERTE BRANDAO PAES DE ANDRADE PARTICIPANTE EXTERNO 5 SYLVIO FERRAZ DE MELLO PARTICIPANTE EXTERNO 6 José Dias do Nascimento Jr.
    [Show full text]
  • Spitzer to Size up Newly Found Planet
    I n s i d e August 12, 2005 Volume 35 Number 16 News Briefs . 2 The story behind ‘JPL Stories’ . 3 Special Events Calendar . 2 Passings . 4 MRO launch postponed . 2 Letters, Classifieds . 4 Jet Propulsion Laborator y However, the object was so far away Spitzer that its motion was not detected until they reanalyzed the data in January of this year. In the last seven months, to size up the scientists have been studying the planet to better estimate its size and newly its motions. “It's definitely bigger than Pluto,” said found Brown, a professor of planetary astrono- my at Caltech. Scientists can infer the size of a solar planet system object by its brightness, just as one can infer the size of a faraway light bulb if one knows its wattage. The re- Artist’s concept of the flectance of the planet is not yet known. planet catalogued as Scientists cannot yet tell how much 2003UB313 at the light from the Sun is reflected away, lonely outer fringes of but the amount of light the planet re- our solar system. Later this month, the Spitzer Space Telescope flects puts a lower limit on its size. “Even if it reflected 100 percent of the light reaching it, it would Our Sun can be seen will look toward the recently discovered planet in the outlying regions of the solar system. The observation will still be as big as Pluto,” says Brown. “I'd say it’s probably one and a in the distance. bring new information on the size of the 10th planet, which lies half times the size of Pluto, but we’re not sure yet of the final size.
    [Show full text]
  • Comparative Kbology: Using Surface Spectra of Triton
    COMPARATIVE KBOLOGY: USING SURFACE SPECTRA OF TRITON, PLUTO, AND CHARON TO INVESTIGATE ATMOSPHERIC, SURFACE, AND INTERIOR PROCESSES ON KUIPER BELT OBJECTS by BRYAN JASON HOLLER B.S., Astronomy (High Honors), University of Maryland, College Park, 2012 B.S., Physics, University of Maryland, College Park, 2012 M.S., Astronomy, University of Colorado, 2015 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Astrophysical and Planetary Sciences 2016 This thesis entitled: Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs written by Bryan Jason Holler has been approved for the Department of Astrophysical and Planetary Sciences Dr. Leslie Young Dr. Fran Bagenal Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii ABSTRACT Holler, Bryan Jason (Ph.D., Astrophysical and Planetary Sciences) Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs Thesis directed by Dr. Leslie Young This thesis presents analyses of the surface compositions of the icy outer Solar System objects Triton, Pluto, and Charon. Pluto and its satellite Charon are Kuiper Belt Objects (KBOs) while Triton, the largest of Neptune’s satellites, is a former member of the KBO population. Near-infrared spectra of Triton and Pluto were obtained over the previous 10+ years with the SpeX instrument at the IRTF and of Charon in Summer 2015 with the OSIRIS instrument at Keck.
    [Show full text]
  • The Big Eye Vol 2 No 1
    Friends of Palomar Observatory P.O. Box 200 Palomar Mountain, CA 92060-0200 The Big Eye The Newsletter of the Friends of Palomar Observatory Vol. 2, No. 1 Solar System Now Palomar’s Astronomical Has Eight Planets Bandwidth The International Astronomical Union (IAU) recently downgraded the status of Pluto to that of a “dwarf plan- For the past three years, astronomers at the et,” a designation that will also be applied to the spheri- California Institute of Technology’s Palomar Obser- cal body discovered last year by California Institute of vatory in Southern California have been using the Technology planetary scientist Mike Brown and his col- High Performance Wireless Research and Education leagues. The decision means that only the rocky worlds Network (HPWREN) as the data transfer cyberin- of the inner solar system and the gas giants of the outer frastructure to further our understanding of the uni- system will hereafter be designated as planets. verse. Recent applications include the study of some The ruling effectively settles a year-long controversy of the most cataclysmic explosions in the universe, about whether the spherical body announced last year and the hunt for extrasolar planets, and the discovery informally named “Xena” would rise to planetary status. of our solar system’s tenth planet. The data for all Somewhat larger than Pluto, the body has been informally this research is transferred via HPWREN from the known as Xena since the formal announcement of its remote mountain observatory to college campuses discovery on July 29, 2005, by Brown and his co-discov- hundreds of miles away.
    [Show full text]
  • Asteroids Near and Far
    Asteroids Near and Far David J. Tholen Institute for Astronomy University of Hawaii Subaru 20th Anniversary 2019 November 22 Subaru and Near-Earth Asteroids ● Wide, deep imaging one of Subaru's strengths ● One of my earliest uses of Subaru was to look for asteroids interior to the Earth's orbit ● Introduced the term “apohele” to refer to this type of object (to distinguish from Amor, Apollo, Aten near-Earth objects) ● The motivation... Asteroid aphelia circa 2000 The Search for Apohele ● UHAS81 discovered 2004 Dec 13 with Subaru ● Later designated 2004 XZ130 ● At the time of discovery, had the smallest semimajor axis of any known asteroid Orbit of 2004 XZ130 Asteroid aphelia circa 2019 List of Known Apohele Object Aphelion Distance (AU) 2019 AQ3 0.77 2019 LF6 0.79 (418265) 2008 EA32 0.80 2018 JB3 0.88 2013 TQ5 0.89 (164294) 2004 XZ130 0.90 2006 WE4 0.93 2017 YH 0.94 2013 JX28 0.94 (413563) 2005 TG45 0.94 2006 KZ39 0.94 2015 ME131 0.95 2010 XB11 0.95 2014 FO47 0.96 (481817) 2008 UL90 0.96 2017 XA1 0.97 2012 VE46 0.97 (434326) 2004 JG6 0.97 (163693) Atira 0.98 Discovery of Apophis ● Most famous of the objects discovered during the search for Apohele ● Discovered 2004 June 19 UT ● Not a Subaru discovery, yet Subaru played a role that few people know about ● A stack of the three discovery images... Apophis on 2004 June 19 UT Subaru and Apophis ● UHAS55 identified as object of interest in Subaru images taken 2004 June 17 UT ● Motion faster than 90 arcsec/hr at solar elongation of 56 deg ● Attempted to recover on 2004 June 19 UT with Bok 2.29-m
    [Show full text]
  • Ħųňțįňģ Fǿř Bįģ Pŀǻňěțș Fǻř Běỳǿňđ Pŀųțǿ Mǻỳ Șǿǿň Bě Ěǻșįěř
    Ħųňțįňģ Fǿř Bįģ Pŀǻňěțș Fǻř Běỳǿňđ Pŀųțǿ Mǻỳ Șǿǿň Bě Ěǻșįěř FĚBŘŲǺŘỲ 02, 2015 4:29 PM ĚȚ ŇĚĿĿ ĢŘĚĚŇFİĚĿĐBǾỲČĚ Ŀįșțěň țǿ țħě Șțǿřỳ All Things Considered 4 min 23 sec Stars over the Cerro Tololo Inter-American Observatory in Chile. Sheppard and Trujillo used the new Dark Energy Camera (DECam) on a telescope there to find the distant dwarf planet 2012 VP 113. Reidar Hahn/Fermilab On a mountaintop in Chile, excavators have just started work on a construction site. It will soon be home to a powerful new telescope that will have a good shot at finding the mysterious Planet X, if it exists. "Planet X is kind of a catchall name given to any speculation about an unseen companion orbiting the sun," says Kevin Luhman, an astronomer at Penn State University. The discovery images of 2012 VP113, which has the most distant orbit known in our Solar System. The dwarf planet's movement suggests its orbit. Source: Carnegie Institution of Science Credit: Scott Sheppard For more than a century, scientists have observed various things that they thought could be explained by the presence of an unknown planet lurking at the edge of our solar system. "There's a huge volume of space in the outer solar system," says Luhman. "We know almost nothing about what might be out there." Some conspiracy-minded folks even think that Planet X has already been discovered. "There are a lot of these people on the Internet," says Luhman, "who think that, for instance, NASA knows about an unseen planet, but it's on a collision course with Earth and it's going to destroy us, but they don't tell us about it." Finding a major new planet would be big news.
    [Show full text]
  • In National Parks NEWS
    VOL. 97 • NO. 19 • 1 OCT 2016 Global Risks from Coastal Subsidence Lessons from Dwarf Planets AGU Expands into Geohealth Snapshots of Research in National Parks NEWS What Have Dwarf Planets Taught Us About the Solar System? lassrooms across the world received Dwarf Planets Are as Complex as Regular some bad news on 24 August 2006. 1 Planets. When the New Horizons probe C Pluto—the celestial body discovered passed by Pluto more than a year ago, in 1930 and named by an 11-year-old​­ girl, the scientists found a complex system with areas “pizzas” in the planet mnemonic “My very of geologically young surface and evidence of educated mother just served us nine piz- active geology. Pluto, the images revealed, zas”—had been officially stricken from the wasn’t just a chunk of rock orbiting in space. solar system’s family of planets and reclassi- “Even I underestimated what we would find,” fied as a “dwarf planet.” said Alan Stern, principal investigator of the The discovery of the slightly more massive New Horizons mission. object Eris inspired the International Astro- Pluto continues to stun scientists with its nomical Union’s (IAU) decision. Proponents unexpected surface features, but its newly of the change insisted that if Pluto got to revealed complexity is just the beginning. keep the label “planet,” so too should simi- Makemake has no atmosphere. Haumea NASA/JHUAPL/SRI larly sized objects—​­like Ceres, for instance, spins faster than any other known large On 14 July 2015, NASA’s New Horizons probe snapped the which was then considered a large asteroid.
    [Show full text]
  • Comparative Kbology: Using Surface Spectra of Triton, Pluto, and Charon
    COMPARATIVE KBOLOGY: USING SURFACE SPECTRA OF TRITON, PLUTO, AND CHARON TO INVESTIGATE ATMOSPHERIC, SURFACE, AND INTERIOR PROCESSES ON KUIPER BELT OBJECTS by BRYAN JASON HOLLER B.S., Astronomy (High Honors), University of Maryland, College Park, 2012 B.S., Physics, University of Maryland, College Park, 2012 M.S., Astronomy, University of Colorado, 2015 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Astrophysical and Planetary Sciences 2016 This thesis entitled: Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs written by Bryan Jason Holler has been approved for the Department of Astrophysical and Planetary Sciences Dr. Leslie Young Dr. Fran Bagenal Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii ABSTRACT Holler, Bryan Jason (Ph.D., Astrophysical and Planetary Sciences) Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs Thesis directed by Dr. Leslie Young This thesis presents analyses of the surface compositions of the icy outer Solar System objects Triton, Pluto, and Charon. Pluto and its satellite Charon are Kuiper Belt Objects (KBOs) while Triton, the largest of Neptune’s satellites, is a former member of the KBO population. Near-infrared spectra of Triton and Pluto were obtained over the previous 10+ years with the SpeX instrument at the IRTF and of Charon in Summer 2015 with the OSIRIS instrument at Keck.
    [Show full text]
  • Jjmonl 1606.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 9, No. 6 June 2016 Dead End? Conventional wisdom has long held that galaxies regenerate from the gas and debris of their own dead stars. Find out why that isn't always true - inside, page 15 http://www.mccarthyobservatory.org June 2016 • 1 The John J. McCarthy Observatory Galactic Observvvererer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Mike Chiarella Roger Moore Route Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Cecilia Dietrich Marc Polansky Dirk Feather Joe Privitera Randy Fender Monty Robson Randy Finden Don Ross John Gebauer Gene Schilling Elaine Green Katie Shusdock Tina Hartzell Paul Woodell Tom Heydenburg Amy Ziffer In This Issue OUT THE WINDOW ON YOUR LEFT .................................... 4 ASTRONOMICAL AND HISTORICAL EVENTS ......................... 12 SURVEYOR 1 LANDING SITE .............................................. 4 COMMONLY USED TERMS ............................................... 14 2016 MERCURY TRANSIT
    [Show full text]
  • När Hittar Vi Planet 9? Av Katrin Ros
    AKTUELL FORSKNING När hittar vi Planet 9? av Katrin Ros Långt ut från solen är det ensamt, kyligt – och nästan helt outforskat. Katrin Ros berättar om villka framtida upptäckter Okänd värld: NASA:s rymdkonstnär Robert Hurt tänker sig Planet 9 vi kan vänta därute. Finns där också en helt okänd planet? knappt upplyst av den avlägsna solen. de yttre delarna av solsystemet är det mörkt och kallare än fortsatte sedan vidare mot de yttre delarna av solsystemet. met bildades. Detta är inte helt enkelt, eftersom både består därför framförallt av vätgas och helium, ämnen som den nordligaste jordiska vinternatt. Vatten är fruset till små Där nådde den dvärgplaneten Pluto i juli 2014 och fortsat- sammansättningen och den dynamiska historiken för kan behålla sin gasform även vid dessa låga temperaturer. iskristaller på ytan av stoftkorn som virvlar runt, koldioxid te sedan vidare mot Arrokoth, som faktiskt blivit upptäckt de flesta planetbyggstenar har förändrats med tiden. Då och då virvlar ett stoftkorn förbi, och ibland leder och kolmonoxid likaså. Solen syns här bara som en liten bara några veckor tidigare med hjälp av rymdteleskopet Numera är många av dem delar av en planet och har den turbulenta gasen dem på kollisionskurs med varandra ljusprick i fjärran, så fjärran att det tar tiotusentals år för Hubble. New Horizons var alltså på väg mot ett okänt mål därigenom förlorat sin distinkta sammansättning; andra – de krockar och växer till större sten- och isbollar. Ikornen att ta sig hela varvet runt i sina omloppsbanor. Här i under lång tid, och det var inte förrän rymdsonden hade har genomgått kollisioner eller värmts upp av solljus eller Under lång tid trodde man att denna kollisionstillväxt de mörka utkanterna av solsystemet finns fortfarande mycket passerat Pluto som ett lämpligt mål i Kuiperbältet upptäcktes.
    [Show full text]
  • Planet 9 Conjunction
    952 Oklahoma Almanac Planet 9 Pluto may have been removed as the ninth planet of our solar system but a bona-fide ninth planet may still exist. As of this writing, astronomers have found, and reinforced, circumstantial evidence of a large planet well past Pluto. The evidence consists of several KBO’s whose orbits appear to have been gravitationally affected by some object 10 – 20 times more massive than Earth. Something out there seems to be pulling on several KBO’s, altering and aligning their orbits. That may seem like weak evidence, but that’s exactly how Neptune was discovered. Calculations showed the gravity of some object appeared to affect Uranus’s orbit around the sun. Predictions of its likely location were made and a dedicated hunt produced the discovery of Neptune. The first evidence for Planet 9 came in 2014 when astronomers Chad Trujillo and Scott S. Sheppard inferred the possible existence of a massive trans-Neptunian planet from similarities in the orbits of the distant trans-Neptunian objects Sedna and 2012 VP 113. By itself, this study was merely interesting. But follow-up studies in 2016 by astronomers Konstantin Batygin and Michael E. Brown at Caltech explained how a massive outer planet would be the likeliest explanation for the similarities in orbits of six distant TNO objects. Together, the two studies carried some weight. Trujillo had been part of the team to find the first planet orbiting a distant star and Brown discovered the first large TNO that caused astronomers to reconsider the definition of “planet,” eventually leading to Pluto’s demotion.
    [Show full text]