Serpentes: Viperinae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WHO Guidance on Management of Snakebites
GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. -
EUROPEAN RED LIST of AMPHIBIANS Appenine Yellow-Bellied Toad (Bombina Pachypus)
EUROPEAN RED LIST OF AMPHIBIANS Appenine Yellow-bellied Toad (Bombina pachypus) November 2011 Photo©Roberto Sindaco The Appenine Yellow-bellied Toad (Bombina Threats to this species are presumed to largely pachypus) is endemic to Italy, where it occurs south include loss and fragmentation of wetland habitat to of the Po Valley, through the Appenine region, drainage for intensive agricultural purposes. south to the southern tip of the Italian mainland. This species is protected under international laws. It It was formerly common, however, the species is listed on Appendix II of the Bern Convention and has declined in almost all of its range (with the Annex II and IV of the EU Habitats Directive. exception of Calabria, where populations remain stable) over the last ten years. It is listed as Endangered according to the IUCN Red List Categories and Criteria on the basis This species occurs in both terrestrial and of rapid recent population declines, suspected freshwater habitats and is commonly found to have been caused by the fungal disease in unshaded pools in forests and open areas, chytridiomycosis. including pools formed in ditches, irrigation areas, farmland, or pasture land. The IUCN Red List of Threatened Species™ - Regional Assessment EUROPEAN RED LIST OF AMPHIBIANS Common Toad (Bufo bufo) November 2011 Photograph © John Wilkinson The Common Toad (Bufo bufo) is a widespread It is listed on Appendix III of the Bern Convention species in Europe. It is generally common and, and is protected by national and sub-national adaptable and has been recorded from coniferous, legislation in many countries. It is recorded on many mixed and deciduous forests, groves, bushlands, national and sub-national Red Data books and lists. -
An in Vivo Examination of the Differences Between Rapid
www.nature.com/scientificreports OPEN An in vivo examination of the diferences between rapid cardiovascular collapse and prolonged hypotension induced by snake venom Rahini Kakumanu1, Barbara K. Kemp-Harper1, Anjana Silva 1,2, Sanjaya Kuruppu3, Geofrey K. Isbister 1,4 & Wayne C. Hodgson1* We investigated the cardiovascular efects of venoms from seven medically important species of snakes: Australian Eastern Brown snake (Pseudonaja textilis), Sri Lankan Russell’s viper (Daboia russelii), Javanese Russell’s viper (D. siamensis), Gaboon viper (Bitis gabonica), Uracoan rattlesnake (Crotalus vegrandis), Carpet viper (Echis ocellatus) and Puf adder (Bitis arietans), and identifed two distinct patterns of efects: i.e. rapid cardiovascular collapse and prolonged hypotension. P. textilis (5 µg/kg, i.v.) and E. ocellatus (50 µg/kg, i.v.) venoms induced rapid (i.e. within 2 min) cardiovascular collapse in anaesthetised rats. P. textilis (20 mg/kg, i.m.) caused collapse within 10 min. D. russelii (100 µg/kg, i.v.) and D. siamensis (100 µg/kg, i.v.) venoms caused ‘prolonged hypotension’, characterised by a persistent decrease in blood pressure with recovery. D. russelii venom (50 mg/kg and 100 mg/kg, i.m.) also caused prolonged hypotension. A priming dose of P. textilis venom (2 µg/kg, i.v.) prevented collapse by E. ocellatus venom (50 µg/kg, i.v.), but had no signifcant efect on subsequent addition of D. russelii venom (1 mg/kg, i.v). Two priming doses (1 µg/kg, i.v.) of E. ocellatus venom prevented collapse by E. ocellatus venom (50 µg/kg, i.v.). B. gabonica, C. vegrandis and B. -
Long-Term Effects of Snake Envenoming
toxins Review Long-Term Effects of Snake Envenoming Subodha Waiddyanatha 1,2, Anjana Silva 1,2 , Sisira Siribaddana 1 and Geoffrey K. Isbister 2,3,* 1 Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura 50008, Sri Lanka; [email protected] (S.W.); [email protected] (A.S.); [email protected] (S.S.) 2 South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka 3 Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW 2308, Australia * Correspondence: [email protected] or [email protected]; Tel.: +612-4921-1211 Received: 14 March 2019; Accepted: 29 March 2019; Published: 31 March 2019 Abstract: Long-term effects of envenoming compromise the quality of life of the survivors of snakebite. We searched MEDLINE (from 1946) and EMBASE (from 1947) until October 2018 for clinical literature on the long-term effects of snake envenoming using different combinations of search terms. We classified conditions that last or appear more than six weeks following envenoming as long term or delayed effects of envenoming. Of 257 records identified, 51 articles describe the long-term effects of snake envenoming and were reviewed. Disability due to amputations, deformities, contracture formation, and chronic ulceration, rarely with malignant change, have resulted from local necrosis due to bites mainly from African and Asian cobras, and Central and South American Pit-vipers. Progression of acute kidney injury into chronic renal failure in Russell’s viper bites has been reported in several studies from India and Sri Lanka. Neuromuscular toxicity does not appear to result in long-term effects. -
Russell's Viper (Daboia Russelii) in Bangladesh: Its Boom and Threat To
J. Asiat. Soc. Bangladesh, Sci. 44(1): 15-22, June 2018 RUSSELL’S VIPER (DABOIA RUSSELII) IN BANGLADESH: ITS BOOM AND THREAT TO HUMAN LIFE MD. FARID AHSAN1* AND MD. ABU SAEED2 1Department of Zoology, University of Chittagong, Chittagong, Bangladesh 2 555, Kazipara, Mirpur, Dhaka-1216, Bangladesh Abstract The occurrence of Russell’s viper (Daboia russelii Shaw and Nodder 1797) in Bangladesh is century old information and its rarity was known to the wildlife biologists till 2013 but its recent booming is also causing a major threat to human life in the area. Recently it has been reported from nine districts (Dinajpur, Chapai Nawabganj, Rajshahi, Naogaon, Natore, Pabna, Rajbari, Chuadanga and Patuakhali) and old records revealed 11 districts (Nilphamari, Dinajpur, Rangpur, Chapai Nawabganj, Rajshahi, Bogra, Jessore, Satkhira, Khulna, Bagerhat and Chittagong). Thus altogether 17 out of 64 districts in Bangladesh, of which Chapai Nawabganj and Rajshahi are most affected and 20 people died due to Russell’s viper bite during 2013 to 2016. Its past and present distribution in Bangladesh and death toll of its bites have been discussed. Its booming causes have also been predicted and precautions have been recommended. Research on Russell’s viper is deemed necessary due to reemergence in deadly manner. Key words: Russell’s viper, Daboia russelii, Distribution, Boom, Panic, Death toll Introduction Two species of Russell’s viper are known to occur in this universe of which Daboia russelii (Shaw and Nodder 1797) is distributed in Pakistan, India, Nepal, Bhutan, Bangladesh and Sri Lanka (www.reptile.data-base.org); while Daboia siamensis (Smith 1917) occurs in China, Myanmar, Indonesia, Thailand, Taiwan and Cambodia (Wogan 2012). -
Venom Proteomics and Antivenom Neutralization for the Chinese
www.nature.com/scientificreports OPEN Venom proteomics and antivenom neutralization for the Chinese eastern Russell’s viper, Daboia Received: 27 September 2017 Accepted: 6 April 2018 siamensis from Guangxi and Taiwan Published: xx xx xxxx Kae Yi Tan1, Nget Hong Tan1 & Choo Hock Tan2 The eastern Russell’s viper (Daboia siamensis) causes primarily hemotoxic envenomation. Applying shotgun proteomic approach, the present study unveiled the protein complexity and geographical variation of eastern D. siamensis venoms originated from Guangxi and Taiwan. The snake venoms from the two geographical locales shared comparable expression of major proteins notwithstanding variability in their toxin proteoforms. More than 90% of total venom proteins belong to the toxin families of Kunitz-type serine protease inhibitor, phospholipase A2, C-type lectin/lectin-like protein, serine protease and metalloproteinase. Daboia siamensis Monovalent Antivenom produced in Taiwan (DsMAV-Taiwan) was immunoreactive toward the Guangxi D. siamensis venom, and efectively neutralized the venom lethality at a potency of 1.41 mg venom per ml antivenom. This was corroborated by the antivenom efective neutralization against the venom procoagulant (ED = 0.044 ± 0.002 µl, 2.03 ± 0.12 mg/ml) and hemorrhagic (ED50 = 0.871 ± 0.159 µl, 7.85 ± 3.70 mg/ ml) efects. The hetero-specifc Chinese pit viper antivenoms i.e. Deinagkistrodon acutus Monovalent Antivenom and Gloydius brevicaudus Monovalent Antivenom showed negligible immunoreactivity and poor neutralization against the Guangxi D. siamensis venom. The fndings suggest the need for improving treatment of D. siamensis envenomation in the region through the production and the use of appropriate antivenom. Daboia is a genus of the Viperinae subfamily (family: Viperidae), comprising a group of vipers commonly known as Russell’s viper native to the Old World1. -
Daboia (Vipera) Palaestinae Envenomation in 123 Horses: Treatment and Efficacy of Antivenom Administration
toxins Article Daboia (Vipera) palaestinae Envenomation in 123 Horses: Treatment and Efficacy of Antivenom Administration Sharon Tirosh-Levy 1,* , Reut Solomovich-Manor 1, Judith Comte 1, Israel Nissan 2 , Gila A. Sutton 1, Annie Gabay 2, Emanuel Gazit 2 and Amir Steinman 1 1 Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; [email protected] (R.S.-M.); [email protected] (J.C.); [email protected] (G.A.S.); [email protected] (A.S.) 2 Ministry of Health Central Laboratories, Jerusalem 9134302, Israel; [email protected] (I.N.); [email protected] (A.G.); [email protected] (E.G.) * Correspondence: [email protected] Received: 2 February 2019; Accepted: 12 March 2019; Published: 19 March 2019 Abstract: Envenomation by venomous snakes is life threatening for horses. However, the efficacy of available treatments for this occurrence, in horses, has not yet been adequately determined. The aim of this study was to describe the treatments provided in cases of Daboia palaestinae envenomation in horses and to evaluate the safety and efficacy of antivenom administration. Data regarding 123 equine snakebite cases were collected over four years from 25 veterinarians. The majority of horses were treated with procaine-penicillin (92.7%), non-steroidal anti-inflammatory drugs (82.3%), dexamethasone (81.4%), tetanus toxoid (91.1%) and antivenom (65.3%). The time interval between treatment and either cessation or 50% reduction of local swelling was linearly associated with case fatality (p < 0.001). -
Revisiting Russell's Viper (Daboia Russelii) Bite in Sri Lanka
Revisiting Russell’s Viper (Daboia russelii) Bite in Sri Lanka: Is Abdominal Pain an Early Feature of Systemic Envenoming? Senanayake A. M. Kularatne1*, Anjana Silva2, Kosala Weerakoon2, Kalana Maduwage3, Chamara Walathara4, Ranjith Paranagama4, Suresh Mendis4 1 Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka, 2 Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka, 3 School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia, 4 Teaching Hospital, Anuradhapura, Sri Lanka Abstract The Russell’s viper (Daboia russelii) is responsible for 30–40% of all snakebites and the most number of life-threatening bites of any snake in Sri Lanka. The clinical profile of Russell’s viper bite includes local swelling, coagulopathy, renal dysfunction and neuromuscular paralysis, based on which the syndromic diagnostic tools have been developed. The currently available Indian polyvalent antivenom is not very effective in treating Russell’s viper bite patients in Sri Lanka and the decision regarding antivenom therapy is primarily driven by clinical and laboratory evidence of envenoming. The non-availability of early predictors of Russell’s viper systemic envenoming is responsible for considerable delay in commencing antivenom. The objective of this study is to evaluate abdominal pain as an early feature of systemic envenoming following Russell’s viper bites. We evaluated the clinical profile of Russell’s viper bite patients admitted to a tertiary care centre in Sri Lanka. Fifty-five patients were proven Russell’s viper bite victims who produced the biting snake, while one hundred and fifty-four were suspected to have been bitten by the same snake species. -
Vipers of the Middle East: a Rich Source of Bioactive Molecules
molecules Review Vipers of the Middle East: A Rich Source of Bioactive Molecules Mohamad Rima 1,*, Seyedeh Maryam Alavi Naini 1, Marc Karam 2, Riyad Sadek 3, Jean-Marc Sabatier 4 and Ziad Fajloun 5,6,* 1 Department of Neuroscience, Institut de Biologie Paris Seine (IBPS), INSERM, CNRS, Sorbonne Université, F-75005 Paris, France; [email protected] 2 Department of Biology, Faculty of Sciences, University of Balamand, Kourah3843, Lebanon; [email protected] 3 Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon; [email protected] 4 Laboratory INSERM UMR 1097, Aix-Marseille University, 163, Parc Scientifique et Technologique de Luminy, Avenue de Luminy, Bâtiment TPR2, Case 939, 13288 Marseille, France; [email protected] 5 Department of Biology, Faculty of Sciences III, Lebanese University, Tripoli 1300, Lebanon 6 Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon * Correspondence: [email protected] (M.R.); [email protected] (Z.F.); Tel.: +961-3-315-174 (Z.F.) Received: 30 September 2018; Accepted: 19 October 2018; Published: 22 October 2018 Abstract: Snake venom serves as a tool of defense against threat and helps in prey digestion. It consists of a mixture of enzymes, such as phospholipase A2, metalloproteases, and L-amino acid oxidase, and toxins, including neurotoxins and cytotoxins. Beside their toxicity, venom components possess many pharmacological effects and have been used to design drugs and as biomarkers of diseases. Viperidae is one family of venomous snakes that is found nearly worldwide. However, three main vipers exist in the Middle Eastern region: Montivipera bornmuelleri, Macrovipera lebetina, and Vipera (Daboia) palaestinae. -
TITLE: Structure and Function of Epigeic Animal Communities with Emphasis in the Lizard Po- Darcis Milensis (Sauria: Lacertidae), in Insular Ecosystems of the Aegean
Rev. Esp. Herp. 13: 133-135 (1999) 133 RESÚMENES DE TESIS TITLE: Structure and function of epigeic animal communities with emphasis in the lizard Po- darcis milensis (Sauria: Lacertidae), in insular ecosystems of the Aegean. AUTHOR: Chloe-Ann Adamopoulou Year: 1999 University of Athens, Department of Biology, Zoological Museum, Athens, Greece. During this study the structure, some basic functions and certain ecological aspects of the main components of animal soil communities were studied in two typical ecosystems of the Aegean islands, in Milos: 1/ in a back-dune system (Achivadolimni) and 2/ in a Mediterranean type ecosystem (Vounalia). These communities include vertebrates, with the lacertid lizard Podarcis milensis being the most abundant representative, as well as invertebrates, mostly arthropoda. In both study plots, the lizard P. milensis plays the most important part in the soil habitats. It is the most important predator for the arthropod fauna and together, the most abundant prey for a considerable number of higher vertebrates including the Milos viper (Macrovipera schweizeri). P. milensis specimens used in this study were either collected directly from the field or pro- vided by the Herpetological collections of the Alexander Koenig Museum und Forschungsinsti- tut (Bonn) and Naturhistorisches Museum of Wien. Whenever needed field specimens and pre- served animals were grouped together for further analysis after being checked for differences using the appropriate statistical methods. The study of the invertebrate fauna was carried out with the use of pitfall traps. Among the soil invertebrates, Coleoptera is the most abundant group during almost all seasons in both study sites. Especially in Achivadolimni they even reach 90% of the total invertebrate population at spring time. -
The First European Pit Viper from the Miocene of Ukraine
The first European pit viper from the Miocene of Ukraine MARTIN NANOV Ivanov, M. 1999. The fust European pit viper from the Miocene of Ukraine. - Acta Palaeontologica Polonica 44,3,327-334. The first discoveries of European pit vipers (Crotalinae gen. et sp. indet. A and B) are re- ported from the Ukrainian Miocene (MN 9a) locality of Gritsev. Based on perfectly pre- served maxillaries, two species closely related to pit vipers of the 'Agkistrodon' complex are represented at the site. It is suggested that the European fossil representatives of the 'Agkistrodon' complex are Asiatic immigrants. Pit vipers probably never expanded into the broader areas of Europe during their geological hstory. Key words: Snakes, Crotalinae, migrations, Miocene, Ukraine. Martin Ivanov [[email protected]], Department of Geology & Palaeontology, Mu- ravian Museum, Zelny' trh 6, 659 37 Bmo, Czech Republic. Introduction Gritsev is located in the western part of Ukraine, in the Khrnelnitsk area, Shepetovski district. The locality contains karstic fillings within a limestone quarry on the right bank of the Khomora river, less than 5 km west of the village of Gritsev. The strati- graphic age of the site corresponds to the Upper Miocene (lower - 'novomoskevski' - horizon of the Middle Sarmatian, MN 9a Mammal Neogene faunal zone). This locality corresponds to the Kalfinsky Formation ('Kalfinsky faunistic complex') and to the Gritsev layers ('Gritsev faunistic complex'). Fossil reptiles from Gritsev have already been investigated. Thus far, Agarnidae, Gekkonidae, Lacertidae, Anguidae, Scincidae, ?Amphisbaenia, Boidae (subfamily Erycinae), Colubridae, Elapidae and Viperidae have been reported (Lungu et al. 1989; Szyndlar & Zerova 1990; Zerova 1987, ,1989, 1992). -
A Proteomic Analysis of Pakistan Daboia Russelii Russelii Venom and Assessment of Potency of Indian Polyvalent and Monovalent Antivenom
Journal of Proteomics 144 (2016) 73–86 Contents lists available at ScienceDirect Journal of Proteomics journal homepage: www.elsevier.com/locate/jprot A proteomic analysis of Pakistan Daboia russelii russelii venom and assessment of potency of Indian polyvalent and monovalent antivenom Ashis K. Mukherjee a,b,⁎, Bhargab Kalita a, Stephen P. Mackessy b a Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India b School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639-0017, USA article info abstract Article history: To address the dearth of knowledge on the biochemical composition of Pakistan Russell's Viper (Daboia russelii Received 29 March 2016 russelii) venom (RVV), the venom proteome has been analyzed and several biochemical and pharmacological Received in revised form 14 May 2016 properties of the venom were investigated. SDS-PAGE (reduced) analysis indicated that proteins/peptides in Accepted 1 June 2016 the molecular mass range of ~56.0–105.0 kDa, 31.6–51.0 kDa, 15.6–30.0 kDa, 9.0–14.2 kDa and 5.6–7.2 kDa con- Available online 03 June 2016 tribute approximately 9.8%, 12.1%, 13.4%, 34.1% and 30.5%, respectively of Pakistan RVV. Proteomics analysis of fi fi Keywords: gel- ltration peaks of RVV resulted in identi cation of 75 proteins/peptides which belong to 14 distinct snake ESI-LC-MS/MS venom protein families. Phospholipases A2 (32.8%), Kunitz type serine protease inhibitors (28.4%), and snake Snake venom enzymes venom metalloproteases (21.8%) comprised the majority of Pakistan RVV proteins, while 11 additional families Snake venom non-enzymatic proteins accounted for 6.5–0.2%.