Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus Subtilis

Total Page:16

File Type:pdf, Size:1020Kb

Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus Subtilis J. Microbiol. Biotechnol. (2018), 28(1), 122–135 https://doi.org/10.4014/jmb.1706.06057 Research Article Review jmb Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus subtilis Katarzyna Roeske*, Radosław Stachowiak, Tomasz Jagielski, Michał Kamiński, and Jacek Bielecki Department of Applied Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland Received: June 28, 2017 Revised: October 14, 2017 Listeriolysin O (LLO), one of the most immunogenic proteins of Listeria monocytogenes and its Accepted: October 22, 2017 main virulence factor, mediates bacterial escape from the phagosome of the infected cell. Thus, First published online its expression in a nonpathogenic bacterial host may enable effective delivery of heterologous January 24, 2018 antigens to the host cell cytosol and lead to their processing predominantly through the *Corresponding author cytosolic MHC class I presentation pathway. The aim of this project was to characterize the Phone: +48-22-5541312; delivery of a model antigen, chicken egg ovalbumin (OVA), to the cytosol of dendritic cells by Fax: +48-22-5541404; E-mail: [email protected] recombinant Bacillus subtilis vegetative cells expressing LLO. Our work indicated that LLO produced by non-sporulating vegetative bacteria was able to support OVA epitope presentation by MHC I molecules on the surface of antigen presenting cells and consequently influence OVA-specific cytotoxic T cell activation. Additionally, it was proven that the genetic context of the epitope sequence is of great importance, as only the native full-sequence OVA fused to the N-terminal fragment of LLO was sufficient for effective epitope delivery and activation of CD8+ lymphocytes. These results demonstrate the necessity for further verification of the fusion antigen potency of enhancing the MHC I presentation, and they prove that LLO-producing B. subtilis may represent a novel and attractive candidate for a pISSN 1017-7825, eISSN 1738-8872 vaccine vector. Copyright© 2018 by The Korean Society for Microbiology Keywords: Antigen delivery, Bacillus subtilis, cellular response, listeriolysin O, vaccine design and Biotechnology Introduction Different strategies can be used to deliver antigens to the cytosol of APCs, such as using (i) nanoparticles : liposomes, Cytotoxic CD8+ T cell lymphocytes (CTLs) play an immune-stimulating complexes, or nucleoproteins, (ii) important role in the eradication of many intracellular viruses, or (iii) pathogenic and nonpathogenic bacteria [4]. pathogens, as well as in the destruction of cancer cells [1]. Among them, the use of bacterial carriers constitutes The interaction of the T cell receptor of the lymphocytes probably the most studied and the most promising (TCR) with major histocompatibility complex class I (MHC strategy. Both attenuated and commensal microorganisms class I) molecules located at the surface of the antigen- are used in the next-generation vaccine design; however, presenting cells (APCs), such as dendritic cells (DCs) or owing to the potential risk of conversion to a virulent strain macrophages, provide the specificity of the interaction and causing infection or the loss of immunogenic potency, between those two types of cells. After recognizing the pathogenic vectors are less likely to be used [5]. Bacillus MHC I-peptide complexes of infected cells and receiving subtilis, a gram-positive nonpathogenic soil bacterium, has costimulation from the CD4+ T lymphocytes, CTLs become been widely explored as a host for the expression of foreign activated, leading to removal of the target cells by apoptosis proteins with pharmacological and immunological activities and release of membrane-perforating granzymes and [6-8], which is due to (i) its lack of an outer membrane, perforins [2]. More importantly, a population of memory allowing efficient transport of secretion proteins outside of T cells is generated, leading to resistance to a pathogen the cell, (ii) available knowledge on the genetics and physiology whose antigen was presented [3]. of this species, (iii) its well-established nonpathogenicity, J. Microbiol. Biotechnol. Bacillus subtilis Vegetative Cells and Antigen Delivery 123 (iv) production of spores, enabling survival in adverse adjuvant candidate [22-24]. Another feature of LLO that conditions, and (v) the low costs of culturing. B. subtilis has supports its use in delivering antigens to the cytoplasm of been successfully explored as a host for the expression of host cells is the presence of a PEST-like sequence (P, Pro; E, foreign proteins with immunological activities [9, 10]. Glu; S, Ser; T, Thr) in the structure of the toxin. This N- Genetically modified B. subtilis spores have been also engaged terminal 26-amino-acid sequence was previously thought in a presentation of antigens fused to spore coat proteins, to mediate proteasomal degradation by the host, thereby such as fragments of FliD flagellar cap protein of Clostridium limiting the activity of the cytolysin to the vacuole and tetani [11], UreA protein of Helicobacter acinonychis [12], or protecting the host cell from damage [25]. However, this VP28 protein of white spot syndrome virus [13]. hypothesis has since been retracted by the authors as they Despite the confirmed immunogenicity of such vaccines, proved that the PEST-like region mediates LLO cytotoxicity there are problems that need to be resolved, such as the low by influencing the amount of protein that is synthesized or levels of systemic humoral and cellular response, particularly secreted by the bacteria when they are growing in the host when administering orally [14-16]. It may be caused by a cytosol [26]. The immunogenic potential of this sequence widespread presence of spores in the environment and was examined by Sewell et al. [24], who demonstrated that their structure devoid of the molecular patterns that elicit a the coexpression of the antigen E7 of HPV-16 enhances the proinflammatory response in mammals. These features, immunogenicity of L. monocytogenes and leads to tumor along with a lack of invasiveness, make it necessary to regression in a mouse model. However, studies on the repeat the vaccination and to administer extremely high ability of the fusion antigens carrying the PEST-like sequence doses of bacteria [14]. A more promising perspective in produced by nonpathogenic bacterial vectors to induce bacterial vaccine development is using vegetative non- CTLs still have to be carried out. sporulating strains, as only vegetative recombinant strains In this study, we constructed a set of strains to test are able to induce a strong CD8+ lymphocyte response [17]. whether non-sporulating vegetative B. subtilis could be a The immunogenicity of nonpathogenic B. subtilis-based novel vector for delivery of a model antigen directly to the vectors can be increased by expression of virulence cytosol of APCs. The new constructions were based on determinants of intracellular pathogens. Among the proteins previous knowledge on the immunological potency of both that can lead to bacterial cell invasion and escape from the listeriolysin O and its N-terminal PEST-like sequence [24, 25], vacuole to the cytoplasm of the host cell, there are virulence as well as on the availability of molecular tools allowing determinants of an intracellular pathogen, Listeria detection of the OVA-peptide presentation and OVA- monocytogenes. To facilitate the presentation of the antigen specific T cell activation. Ovalbumin is one of the most in a complex with MHC I molecules and induction of the frequently used model antigens in research to demonstrate response of CD8+ T cells, the antigen should be delivered antigen delivery and study immune response or anticancer directly to the cytoplasm of the host cell, which can be therapies [27-29]. We evaluated whether fusions of the provided by the activity of listeriolysin O (LLO). L. monocytogenes full-length LLO or its N-terminal sequence LLO, a member of the cholesterol-dependent cytolysin could improve the secretion of a model antigen (OVA) or family of bacterial toxins, is a major virulence factor of its epitope SIINFEKL in B. subtilis. We also hypothesized L. monocytogenes and was originally shown to be crucial for that by the pore-forming activity of LLO, the cytoplasmic bacterial escape from the internalization vacuole after entry delivery to APCs would be facilitated, thereby leading to into eukaryotic cells [18]. Bacterial translocation to the effective OVA antigen presentation by MHC I complexes cytosol mediated by LLO results in presentation of the and subsequent activation of OVA-specific cytotoxic T cells. antigen through the MHC I pathway. Both CD4+ and CD8+ lymphocytes are induced, thereby leading to a complex Materials and Methods cell-mediated response to the main listerial antigens [19]. LLO activity provides access of the accompanying antigens Construction of LLO-OVA B. subtilis Mutant Strains to the cytosolic compartment and entry to the presentation All constructions encoding the LLO-OVA fusions of different pathway through transporter associated with antigen construction were prepared on the basis of pUR10, an LLO- presentation (TAP). Such coexpression has been widely encoding integration plasmid and derivative of pAG58-1-ble. The investigated in research on live vaccine vectors [20, 21]. original integrative vector was modified as follows: the nonessential sequence was removed in order to reduce the vector size and enable Interestingly, LLO is
Recommended publications
  • Crystal Structure of the Vibrio Cholerae Cytolysin Heptamer Reveals Common Features Among Disparate Pore-Forming Toxins
    Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins Swastik De and Rich Olson1 Department of Molecular Biology and Biochemistry, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459 Edited* by Pamela J. Bjorkman, California Institute of Technology, Pasadena, CA, and approved March 21, 2011 (received for review November 19, 2010) Pore-forming toxins (PFTs) are potent cytolytic agents secreted are the staphylococcal PFTs, which display weak sequence iden- by pathogenic bacteria that protect microbes against the cell- tity (approximately 15%) but strong structural similarity with mediated immune system (by targeting phagocytic cells), disrupt the VCC core domain (6). Structures exist for the water-soluble epithelial barriers, and liberate materials necessary to sustain bicomponent LukF (7, 8) and LukS (9) toxins as well as the growth and colonization. Produced by gram-positive and gram- homomeric α-hemolysin (α-HL) heptamer (10), which represents negative bacteria alike, PFTs are released as water-soluble mono- the only fully assembled β-PFTcrystal structure determined until meric or dimeric species, bind specifically to target membranes, and now. Distinct in sequence and structure from VCC (and each assemble transmembrane channels leading to cell damage and/or other), but with a similar heptameric stoichiometry, are the ex- lysis. Structural and biophysical analyses of individual steps in tensively studied aerolysin (11) and anthrax toxins (12) produced the assembly
    [Show full text]
  • The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
    toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1].
    [Show full text]
  • Directed Antigen Delivery As a Vaccine Strategy for an Intracellular Bacterial Pathogen
    Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen H. G. Archie Bouwer*, Christine Alberti-Segui†, Megan J. Montfort*, Nathan D. Berkowitz†, and Darren E. Higgins†‡ *Immunology Research, Earle A. Chiles Research Institute and Veterans Affairs Medical Center, Portland, OR 97239; and †Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115 Edited by John J. Mekalanos, Harvard Medical School, Boston, MA, and approved February 8, 2006 (received for review October 27, 2005) We have developed a vaccine strategy for generating an attenu- murine infection model. Many facets of pathogenesis and protective ated strain of an intracellular bacterial pathogen that, after uptake immunity to Lm are well characterized. After uptake by APCs, Lm by professional antigen-presenting cells, does not replicate intra- escapes from the phagocytic vacuole into the cytosol, an event cellularly and is readily killed. However, after degradation of the facilitated by a secreted pore-forming cytolysin, listeriolysin O vaccine strain within the phagolysosome, target antigens are (LLO) (8). After escape from the vacuole, Lm replicates freely released into the cytosol for endogenous processing and presen- within the cytosol, allowing bacterial products to access the endog- tation for stimulation of CD8؉ effector T cells. Applying this enous MHC Class I presentation pathway. Consistent with this strategy to the model intracellular pathogen Listeria monocyto- cytosolic replication niche, protective antilisterial immunity de- genes, we show that an intracellular replication-deficient vaccine pends on Lm-specific CD8ϩ effector T cells, with antibody playing strain is cleared rapidly in normal and immunocompromised ani- no significant role (9).
    [Show full text]
  • From Phagosome Into the Cytoplasm on Cytolysin, Listeriolysin O, After Evasion Listeria Monocytogenes in Macrophages by Dependen
    Dependency of Caspase-1 Activation Induced in Macrophages by Listeria monocytogenes on Cytolysin, Listeriolysin O, after Evasion from Phagosome into the Cytoplasm This information is current as of September 23, 2021. Hideki Hara, Kohsuke Tsuchiya, Takamasa Nomura, Ikuo Kawamura, Shereen Shoma and Masao Mitsuyama J Immunol 2008; 180:7859-7868; ; doi: 10.4049/jimmunol.180.12.7859 http://www.jimmunol.org/content/180/12/7859 Downloaded from References This article cites 50 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/180/12/7859.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Dependency of Caspase-1 Activation Induced in Macrophages by Listeria monocytogenes on Cytolysin, Listeriolysin O, after Evasion from Phagosome into the Cytoplasm1 Hideki Hara, Kohsuke Tsuchiya, Takamasa Nomura, Ikuo Kawamura, Shereen Shoma, and Masao Mitsuyama2 Listeriolysin O (LLO), an hly-encoded cytolysin from Listeria monocytogenes, plays an essential role in the entry of this pathogen into the macrophage cytoplasm and is also a key factor in inducing the production of IFN-␥ during the innate immune stage of infection.
    [Show full text]
  • Penetration of Stratified Mucosa Cytolysins Augment Superantigen
    Cytolysins Augment Superantigen Penetration of Stratified Mucosa Amanda J. Brosnahan, Mary J. Mantz, Christopher A. Squier, Marnie L. Peterson and Patrick M. Schlievert This information is current as of September 25, 2021. J Immunol 2009; 182:2364-2373; ; doi: 10.4049/jimmunol.0803283 http://www.jimmunol.org/content/182/4/2364 Downloaded from References This article cites 76 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/182/4/2364.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Cytolysins Augment Superantigen Penetration of Stratified Mucosa1 Amanda J. Brosnahan,* Mary J. Mantz,† Christopher A. Squier,† Marnie L. Peterson,‡ and Patrick M. Schlievert2* Staphylococcus aureus and Streptococcus pyogenes colonize mucosal surfaces of the human body to cause disease. A group of virulence factors known as superantigens are produced by both of these organisms that allows them to cause serious diseases from the vaginal (staphylococci) or oral mucosa (streptococci) of the body.
    [Show full text]
  • Antibodies Against Pneumolysine and Their Applications
    Europaisches Patentamt J European Patent Office © Publication number: 0 687 688 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC © Application number: 95903822.5 © int. ci.<>: C07K 16/12, C07K 5/10, C07K 14/315, C07K 14/33, @ Date of filing: 17.12.94 A61 K 39/395, G01 N 33/569 © International application number: PCT/ES94/00135 © International publication number: WO 95/16711 (22.06.95 95/26) © Priority: 17.12.93 ES 9302615 Inventor: MENDEZ, Francisco J. 14.02.94 ES 9400265 Fernando Vela, 20 13.08.94 GB 9416393 E-33011 Oviedo (ES) Inventor: DE LOS TOYOS, Juan R. © Date of publication of application: Marcelino Suarez, 13 20.12.95 Bulletin 95/51 E-33012 Oviedo (ES) Inventor: VAZQUEZ, Fernando @ Designated Contracting States: Cervantes, 33 AT BE CH DE DK ES FR GB IE IT LI NL SE E-33005 Oviedo (ES) Inventor: MITCHELL, Timmothy © Applicant: UNIVERSIDAD DE OVIEDO 25 Mawbys Lane, Calle San Francisco, 3 Appleby Magna E-33003 Oviedo (ES) Swadlincote DE12 7AA (GB) Applicant: UNIVERSITY OF LEICESTER Inventor: ANDREW, Peter University Road 7 Lane Leicester, LE1 7RH (GB) Chapel Leicester LE2 3WF (GB) © Inventor: FLEITES, Ana Inventor: MORGAN, Peter J. Campoamor, 28 40 Medina Drive, E-33001 Oviedo (ES) Tollerton Inventor: FERNANDEZ, Jes s M. Nottingham NG12 4EP (GB) Marques de Lozoya, 12 E-28007 Madrid (ES) Inventor: HARDISSON, Carlos © Representative: Ibanez, Jose Francisco Arguelles, 19 Rodriguez San Pedro, 10 E-33002 Oviedo (ES) E-28015 Madrid (ES) 00 00 CO (54) ANTIBODIES AGAINST PNEUMOLYSINE AND THEIR APPLICATIONS IV 00 CO © An object of the invention is the generation of hybridomas and the production and characterization of the corresponding monoclonal antibodies specific to pneumolysine, which could be used for various purposes, including diagnosis, prophylaxis and therapy.
    [Show full text]
  • Purification and Characterization of an Extracellular Cytolysin Produced by Vibrio Damsela MAHENDRA H
    INFECTION AND IMMUNITY, JUlY 1985, P. 25-31 Vol. 49, No. 1 0019-9567/85/070025-07$02.00/0 Copyright © 1985, American Society for Microbiology Purification and Characterization of an Extracellular Cytolysin Produced by Vibrio damsela MAHENDRA H. KOTHARY AND ARNOLD S. KREGER* Department of Microbiology and Immunology, The Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27103 Received 10 January 1985/Accepted 26 March 1985 Large amounts of an extremely potent extracellular cytolysin produced by the halophilic bacterium Vibrio damsela were obtained free of detectable contamination with medium constituents and other bacterial products by sequential ammonium sulfate precipitation, gel filtration with Sephadex G-100, and hydrophobic interaction chromatography with phenyl-Sepharose CL-4B. The cytolysin is heat labile and protease sensitive and has a molecular weight (estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of ca. 69,000 and an isoelectric point of ca. 5.6. The first 10 amino-terminal amino acid residues of the cytolysin are Phe-Thr-Gln- Trp-Gly-Gly-Ser-Gly-Leu-Thr. The cytolysin was very active against erythrocytes from 4 of the 18 animal species examined (mice, rats, rabbits, damselfish) and against Chinese hamster ovary cells and was lethal for mice (ca. 1 ,Ig/kg, intraperitoneal median lethal dose). Lysis of mouse erythrocytes by the cytolysin is a multi-hit, at least two-step process consisting of a temperature-independent, toxin-binding step followed by a temperature-dependent, membrane-perturbation step(s). The halophilic bacterium Vibrio damsela, one of seven The purified cytolysin preparation (stage 4) was assayed new Vibrio species recognized since 1976 as possible causes for activity against Chinese hamster ovary cells as described of human disease (26, 30), is an opportunistic pathogen that by Kreger and Lockwood (17).
    [Show full text]
  • Linked Group B Streptococcal Я-Hemolysin Cytolysin and Carotenoid Pigment Function to Subvert Host Phagocyte
    Sword and shield: Linked group B streptococcal ␤-hemolysin͞cytolysin and carotenoid pigment function to subvert host phagocyte defense George Y. Liu*, Kelly S. Doran*, Toby Lawrence†, Nicole Turkson‡, Manuela Puliti§, Luciana Tissi§, and Victor Nizet*‡¶ Departments of *Pediatrics and †Pharmacology and ‡Center for Marine Biotechnology and Biomedicine, The Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093; and §Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06122 Perugia, Italy Communicated by Donald R. Helinski, University of California at San Diego, La Jolla, CA, August 23, 2004 (received for review January 12, 2004) Group B Streptococcus (GBS) is a major cause of pneumonia, A clinical association with invasive human infections implies bacteremia, and meningitis in neonates and has been found to persist that GBS can sometimes survive innate host defense mecha- inside host phagocytic cells. The pore-forming GBS ␤-hemolysin͞ nisms called upon to clear the bacteria from the bloodstream and cytolysin (␤H͞C) encoded by cylE is an important virulence factor tissues. A principal role in innate immunity is played by host as demonstrated in several in vivo models. Interestingly, cylE neutrophils and macrophages, which can engulf and kill bacteria deletion results not only in the loss of ␤H͞C activity, but also in the by generation of reactive oxygen species and other antimicrobial loss of a carotenoid pigment of unknown function. In this study, substances within the phagolysosome. Although streptococci are we sought to define the mechanism(s) by which cylE may contrib- commonly thought of as ‘‘extracellular pathogens,’’ GBS can ute to GBS phagocyte resistance and increased virulence potential.
    [Show full text]
  • Two Proteins Targeted to the Same Lytic Granule Compartment Undergo Very Different Posttranslational Processing
    Proc. Nadl. Acad. Sci. USA Vol. 86, pp. 7128-7132, September 1989 Immunology Two proteins targeted to the same lytic granule compartment undergo very different posttranslational processing (cytolysin/Na-benzyloxycarbonyl-L-lysine thiobenzyl estrase/immunoelectron microscopy/N-glycosylation/mannose 6-phosphate) JANIS K. BURKHARDT, SUSAN HESTER, AND YAIR ARGON* Department of Microbiology and Immunology, Duke University Medical Center, Box 3010, Durham NC 27710 Communicated by D. Bernard Amos, June 19, 1989 ABSTRACT The granules of natural killer (NK) cells membranes of target cells after exposure to cytotoxic lym- contain cytolysin and serine proteases, proteins that are ex- phocytes (5). Also packaged in thegranules is afamily ofserine pressed specifically in cytolytic cells and are released in re- proteases (6), often called granzymes (7), whose expression is sponse to target binding. We have used immunofluorescence restricted to CTLs and NK cells (6-8). In rat NK cells, two of and immunoelectron microscopy to localize these proteins with these proteases have been classified as Na-benzyloxycar- respect to the various morphological compartments ofgranules bonyl-L-lysine thiobenzyl esterases based on their substrate in a rat NK cell line. Both cytolysin and the proteases are specificity (9). At least one ofthe two, granzyme A, is secreted limited to the core regions of the dense core granules. While during cytolysis (10), but its exact function is not yet known. these proteins are targeted to the same compartment, they A third component of NK granules is a chondroitin sulfate differ markedly in their posttranslational processing. Cytolysin proteoglycan, which is released during the killing process (11). bears N-linked oligosaccharides that are converted to the The presence ofproteoglycans is typical of secretory granules complex type, while the major trypsin-like protease, granzyme in various cell types (3).
    [Show full text]
  • Suppression of Cell-Mediated Immunity Following Recognition of Phagosome-Confined Bacteria
    Suppression of Cell-Mediated Immunity following Recognition of Phagosome-Confined Bacteria Keith S. Bahjat1.*, Nicole Meyer-Morse2., Edward E. Lemmens3¤a, Jessica A. Shugart1, Thomas W. Dubensky, Jr.3¤b, Dirk G. Brockstedt3"¤c, Daniel A. Portnoy2,4"* 1 Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Center, Portland, Oregon, United States of America, 2 Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America, 3 Anza Therapeutics, Concord, California, United States of America, 4 School of Public Health, University of California, Berkeley, California, United States of America Abstract Listeria monocytogenes is a facultative intracellular pathogen capable of inducing a robust cell-mediated immune response to sub-lethal infection. The capacity of L. monocytogenes to escape from the phagosome and enter the host cell cytosol is paramount for the induction of long-lived CD8 T cell–mediated protective immunity. Here, we show that the impaired T cell response to L. monocytogenes confined within a phagosome is not merely a consequence of inefficient antigen presentation, but is the result of direct suppression of the adaptive response. This suppression limited not only the adaptive response to vacuole-confined L. monocytogenes, but negated the response to bacteria within the cytosol. Co-infection with phagosome-confined and cytosolic L. monocytogenes prevented the generation of acquired immunity and limited expansion of antigen-specific T cells relative to the cytosolic L. monocytogenes strain alone. Bacteria confined to a phagosome suppressed the production of pro-inflammatory cytokines and led to the rapid MyD88-dependent production of IL-10.
    [Show full text]
  • Cytotoxicity of Vibrio Vulnificus Cytolysin on Pulmonary Endothelial Cells
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 29, No 2, 117-121, June 1997 Cytotoxicity of Vibrio vulnificus cytolysin on pulmonary endothelial cells Jong-Suk Kim1 cells in culture, and acted as a vascular permeability factor. Even sub-microgram amount of the cytolysin is 1 Department of Biochemistry, School of Medicine and fatal to mice when injected intravenously (Gray and Institute for Medical Science, Kreger, 1985; Park et al., 1996). The extensive tissue Chonbuk National University, Chonju 561-756, Korea damage which occurred in mice after subcutaneous injection of the cytolysin, and was very simillar to that Accepted 26 May 1997 observed during V. vulnificus wound infections (Gray and Kreger, 1989). These reports suggest that the cytolysin Abbreviations: HU, hemolytic unit; LDH, lactate dehydrogenase is the major factor in the pathogenesis of V. vulnificus infections. Although several lines of investigations on the the action of the cytolysin against mammalian cells such as mast cells (Yamanaka et al., 1990) and erythro- cytes (Kim et al., 1993; Park. et al., 1994; Chae et al., Abstract 1996) has been carried out, the role of the cytolysin in the pathogenesis of the disease is not well known. The cytolysin produced by V. vulnificus has been Recently, it has been known that V. v u l n i f i c u s cy t o l y s i n known to cause lethality by increasing pulmonary have lethal activity primarily by increasing vascular vascular permeability in mice. In the present study, permeability and neutrophil sequestration in the lung of its cytotoxic mechanism on CPAE cell, a cell line of mice (Park et al., 1996), and causes hypotension in rats pulmonary endothelial cell, has been investigated.
    [Show full text]
  • Pneumolysin Induces 12-Lipoxygenase–Dependent Neutrophil Migration During Streptococcus Pneumoniae Infection
    Pneumolysin Induces 12-Lipoxygenase− Dependent Neutrophil Migration during Streptococcus pneumoniae Infection This information is current as Walter Adams, Rudra Bhowmick, Elsa N. Bou Ghanem, of September 24, 2021. Kristin Wade, Mikhail Shchepetov, Jeffrey N. Weiser, Beth A. McCormick, Rodney K. Tweten and John M. Leong J Immunol published online 27 November 2019 http://www.jimmunol.org/content/early/2019/11/26/jimmun ol.1800748 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/11/26/jimmunol.180074 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 27, 2019, doi:10.4049/jimmunol.1800748 The Journal of Immunology Pneumolysin Induces 12-Lipoxygenase–Dependent Neutrophil Migration during Streptococcus pneumoniae Infection Walter Adams,*,† Rudra Bhowmick,*,1 Elsa N. Bou Ghanem,*,2 Kristin Wade,‡,3 Mikhail Shchepetov,x,4 Jeffrey N. Weiser,{ Beth A.
    [Show full text]