Identification of a Soft Coral Garden Candidate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planula Release, Settlement, Metamorphosis and Growth in Two Deep-Sea Soft Corals
REPRODUCTIVE BIOLOGY OF DEEP-SEA SOFT CORALS IN THE NEWFOUNDLAND AND LABRADOR REGION by ©Zhao Sun A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Ocean Sciences Centre and Department of Biology, Memorial University, St. John's (Newfoundland and Labrador) Canada 28 April2009 ABSTRACT This research integrates processing of pre erved samples and, for the first time, long-term monitoring of live colonies and the study of planula behaviour and settlement preferences in four deep-sea brooding octocorals (Alcyonacea: Nephtheidae). Results indicate that reproduction can be correlated to bottom temperature, photoperiod, wind speed and fluctuations in phytoplankton abundance. Large planula larvae are polymorphic, exhibit ubstratum selectivity and can fuse together or with a parent colony. Planulae of two Drifa species are also able to metamorphose in the water column before ettlement. Thi research thus brings evidence of both the resilience (i.e., extended breeding period, demersal larvae with a long competency period) and vulnerability (i.e., substratum selectivity, slow growth) of deep-water corals; and open up new perspectives on experimental tudies of deep-sea organisms. II ACKNOWLEDGEMENTS I would like to thank my supervisor Annie Mercier, as well a Jean-Fran~oi Hamel, for their continuou guidance, support and encouragement. With great patience and pas ion, they helped me adapt to graduate studies. I would also like to thank my co- upervisor Evan Edinger, committee member Paul Snelgrove and examiners Catherine McFadden and Robert Hooper for providing valuable input and for comment on the manuscripts and thesis. -
BEHAVIOURAL RESPONSE of NORTHERN BASKET STAR GORGONOCEPHALUS ARCTICUS to MECHANICAL STIMULATIONS J.-F Hamel, a Mercier
BEHAVIOURAL RESPONSE OF NORTHERN BASKET STAR GORGONOCEPHALUS ARCTICUS TO MECHANICAL STIMULATIONS J.-F Hamel, A Mercier To cite this version: J.-F Hamel, A Mercier. BEHAVIOURAL RESPONSE OF NORTHERN BASKET STAR GOR- GONOCEPHALUS ARCTICUS TO MECHANICAL STIMULATIONS. Vie et Milieu / Life & En- vironment, Observatoire Océanologique - Laboratoire Arago, 1993, pp.197-203. hal-03045834 HAL Id: hal-03045834 https://hal.sorbonne-universite.fr/hal-03045834 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE MILIEU, 1993, 43 (4): 197-203 BEHAVIOURAL RESPONSE OF NORTHERN BASKET STAR GORGONOCEPHALUS ARCTICUS TO MECHANICAL STIMULATIONS J.-F. HAMEL and A. MERCIER Département d'océanographie, Université du Québec à Rimouski, Centre Océanographique de Rimouski, 310 allée des Ursulines, Rimouski (Québec), Canada G5L 3A1 GORGONOCEPHALUS RÉSUME - L'Ophiure ramifiée Gorgonocephalus arcticus, retrouvée dans les eaux OPHIURE profondes de l'estuaire du Saint-Laurent, montre une capacité de discrimination COMPORTEMENT tactile qui lui permet de répondre proportionnellement à diverses intensités de sti- MECANO-SENSIBILITE mulation. Une stimulation ponctuelle du disque provoque l'enroulement général des bras et la couverture du disque par les radii. Une comparaison de la vitesse du mouvement des bras, induite par différents niveaux de stimulation, montre que G. -
Two New Records of Dendronephthya Octocorals (Family: Nephtheidae) from Andaman and Nicobar Islands, India
Indian Journal of Geo Marine Sciences Vol. 48 (03), March 2019, pp. 343-348 Two new records of Dendronephthya octocorals (Family: Nephtheidae) from Andaman and Nicobar Islands, India J.S. Yogesh Kumar1*, S. Geetha2, C. Raghunathan3, & R. Sornaraj2 1 Marine Aquarium and Regional Centre, Zoological Survey of India, (Ministry of Environment, Forest and Climate Change), Government of India, Digha, West Bengal, India 2 Research Department of Zoology, Kamaraj College (Manonmaniam Sundaranar University), Thoothukudi, Tamil Nadu, India 3 Zoological Survey of India, (Ministry of Environment, Forest and Climate Change), Government of India, M Block, New Alipore, Kolkata, India *[E-mail: [email protected]] Received 04 August 2017: revised 23 November 2017 An extensive survey to explore the variety and distribution of octocorals and associated faunal community in and around the Andaman and Nicobar Islands yielded two species (Dendronephthya mucronata and D. savignyi), which is new zoogeographical record in India. The elaborate description, distribution and morphological characters are presented in this paper. The literature reveals that so far 55 species of Dendronephthya octocorals have been recorded from India. [Keywords: Soft corals, Octocorals, Dendronephthya, Carnation corals, Andaman and Nicobar islands] Introduction circumscribed to the works of Henderson17. The The genus Dendronephthya (Cnidaria: Octocorallia: above studies reported 53 new species. Henderson's Alcyonacea: Nephtheidae) is an azooxanthellate and work was based on the material made available from colourful soft coral reported in the warm coastal the Royal Indian Marine Survey ship collections from waters of the Indo-Pacific region, supporting reef several Indian Ocean locations, of which 34 species formation of coral reef ecosystems throughout the were reported from Andaman and Nicobar islands. -
A Literature Review of the Ophiuroidea (Echinodermata) from the Pacific Coast of Mexico
A literature review of the Ophiuroidea (Echinodermata) from the Pacific coast of Mexico Rebeca Granja-Fernández1, María Dinorah Herrero-Pérezrul2, Andrés López-Pérez3, Alejandro Hernández-Morales4 & Pedro Diego Rangel-Solís3 1. Doctorado en Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana. San Rafael Atlixco 186, Col. Vicentina. CP 09340. D.F., México; [email protected] 2. Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional. Depto. de Pesquerías y Biología Marina. Avenida Instituto Politécnico Nacional s/n. Col. Playa Palo de Santa Rita. C.P. 23096. La Paz, Baja California Sur, México; [email protected] 3. Departamento de Hidrobiología, División CBS, UAM-Iztapalapa. Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, AP 55-535. D.F., México; [email protected], [email protected] 4. Programa de Licenciatura en Ecología Marina, Laboratorio de Ecología Cuantitativa, Universidad Autónoma de Guerrero. Av. Gran Vía Tropical 20, Fraccionamiento Las Playas, CP 39390. Acapulco, Guerrero, México; [email protected] Received 30-V-2014. Corrected 03-X-2014. Accepted 17-XI-2014. Abstract: Despite the important effort of knowing the Ophiuroidea diversity in the Mexican Pacific, some mis- takes in the taxonomic nomenclature have pervaded through time. In order to clarify the latter, a checklist based on literature review of brittle stars from the Mexican Pacific is provided. We reviewed a total of 105 references that in total summarized 125 species of brittle stars from the Mexican Pacific (112) and the Gulf of California (97), belonging to two orders, 16 families and 50 genera. These records are higher than those reported on previ- ous studies carried out in the area. -
Hemichordate Phylogeny: a Molecular, and Genomic Approach By
Hemichordate Phylogeny: A molecular, and genomic approach by Johanna Taylor Cannon A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Keywords: phylogeny, evolution, Hemichordata, bioinformatics, invertebrates Copyright 2014 by Johanna Taylor Cannon Approved by Kenneth M. Halanych, Chair, Professor of Biological Sciences Jason Bond, Associate Professor of Biological Sciences Leslie Goertzen, Associate Professor of Biological Sciences Scott Santos, Associate Professor of Biological Sciences Abstract The phylogenetic relationships within Hemichordata are significant for understanding the evolution of the deuterostomes. Hemichordates possess several important morphological structures in common with chordates, and they have been fixtures in hypotheses on chordate origins for over 100 years. However, current evidence points to a sister relationship between echinoderms and hemichordates, indicating that these chordate-like features were likely present in the last common ancestor of these groups. Therefore, Hemichordata should be highly informative for studying deuterostome character evolution. Despite their importance for understanding the evolution of chordate-like morphological and developmental features, relationships within hemichordates have been poorly studied. At present, Hemichordata is divided into two classes, the solitary, free-living enteropneust worms, and the colonial, tube- dwelling Pterobranchia. The objective of this dissertation is to elucidate the evolutionary relationships of Hemichordata using multiple datasets. Chapter 1 provides an introduction to Hemichordata and outlines the objectives for the dissertation research. Chapter 2 presents a molecular phylogeny of hemichordates based on nuclear ribosomal 18S rDNA and two mitochondrial genes. In this chapter, we suggest that deep-sea family Saxipendiidae is nested within Harrimaniidae, and Torquaratoridae is affiliated with Ptychoderidae. -
Title a DISTRIBUTION STUDY of the OCTOCORALLIA OF
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository A DISTRIBUTION STUDY OF THE OCTOCORALLIA OF Title OREGON Author(s) Belcik, Francis P. PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1977), 24(1-3): 49-52 Issue Date 1977-11-30 URL http://hdl.handle.net/2433/175960 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University A DISTRIBUTION STUDY OF THE OCTOCORALLIA OF OREGON FRANCIS P. BELCIK Department of Biology, East Carolina University, Greenville, North Carolina 27834, U.S.A. With Text-figure 1 and Tables 1-2 Introduction: The purpose of this report was to identify the species of octocorals, note their occurrence or distribution and also their numbers. The Octocorals of this report were collected :rhainly from the Oregonian Region. The majority of specimens were collected by the Oceanography Department of Oregon State University at depths below 86 meters. A few inshore species were collected at various sites along the Oregon Coast (see Fig. 1). Only two species were found in the Intertidal Zone; the bulk of the Octocoral fauna occur offshore in deeper water. Most of the deep water specimens are now deposited in the Oceanography Department of Oregon State University in Corvallis, Oregon. The inshore speci mens have remained in my personal collection. Identification Methods: No references have been published for the soft corals of Oregon; although col lections have possibly been made in the past. Helpful sources for identification, after the standard methods of corrosion, and spicule measurements have been made are: Bayer, 1961; Hickson, 1915; Kiikenthal, 1907, and 1913; Nutting, 1909 and 1912; Utinomi, 1960, 1961, and 1966 and Verrill, 1922. -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Deep-Sea Coral Taxa in the U.S. Northeast Region: Depth and Geographical Distribution (V
Deep-Sea Coral Taxa in the U.S. Northeast Region: Depth and Geographical Distribution (v. 2020) by David B. Packer1, Martha S. Nizinski2, Stephen D. Cairns3, 4 and Thomas F. Hourigan 1. NOAA Habitat Ecology Branch, Northeast Fisheries Science Center, Sandy Hook, NJ 2. NOAA National Systematics Laboratory Smithsonian Institution, Washington, DC 3. National Museum of Natural History, Smithsonian Institution, Washington, DC 4. NOAA Deep Sea Coral Research and Technology Program, Office of Habitat Conservation, Silver Spring, MD This annex to the U.S. Northeast chapter in “The State of Deep-Sea Coral and Sponge Ecosystems of the United States” provides a revised and updated list of deep-sea coral taxa in the Phylum Cnidaria, Class Anthozoa, known to occur in U.S. waters from Maine to Cape Hatteras (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from Packer et al. (2017) with the addition of new species and range extensions into Northeast U.S. waters reported through 2020, along with a number of species previously not included. No new species have been described from this region since 2017. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, then alphabetically by family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distributions. The total number of distinct deep-sea corals documented for the U.S. -
Ophiuroidea: Euryalida: Gorgonocephalidae) from Korea
ISSN 1226-9999 (print) ISSN 2287-7851 (online) Korean J. Environ. Biol. 33(2) : 205~208 (2015) http://dx.doi.org/10.11626/KJEB.2015.33.2.205 A Newly Recorded Basket Star of Genus Gorgonocephalus (Ophiuroidea: Euryalida: Gorgonocephalidae) from Korea Donghwan Kim and Sook Shin* Department of Life Science, Sahmyook University, Seoul 139-742, Korea Abstract - Some euryalid specimens were collected with fishing nets from Mipo, Gyungsangnam- do and Aewol, Jejudo Island, Korea. They were identified as Gorgonocephalus eucnemis (Müller & Troschel, 1842), belonging to family Gorgonocephalidae of order Euryalida, which was new to the Korean fauna. Their molecular analyses were done with newly intended COI primers of mitochondrial cytochrome oxidase I (COI) gene for the accurate molecular identification. The Korean G. eucnemis was coincident with this NCBI species as a result of Blast analysis, which showed the 99% similarity. In the current study, three Gorgonocephalus species have been report- ed from Korea. Key words: Gorgonocephalus eucnemis, basket star, morphology, molecular analysis, Korea INTRODUCTION MATERIALS AND METHODS Family Gorgonocephalidae including 34 genera is the Basket stars were collected at a depth of 100~150 m deep largest one of three families belonging to order Euryalida by fishing nets from Mipo, Korea Strait and Aewol, Jejudo (Okanishi and Fujita 2013) and its four genera, Astroboa, Island, Korea on June 1983 and January 2013, respectively. Astrocladus, Astrodendrum and Gorgonocephalus, have been The specimens were preserved in 95% ethyl alcohol and reported in Korean fauna (Shin 2013). Almost all Gorgono- identified on the basis of morphological characteristics and cephalus species distribute exclusively in deep water and are molecular analyses. -
Final Report Form
Appendix K – OSRI Grant Policy Manual Final Report Form - Oil Spill Recovery Institute An electronic copy of this report shall be submitted by mail, or e-mail to the OSRI Research Program Manager [email protected] and Financial Office [email protected] Mailing address: P.O. Box 705 - Cordova, AK 99574 - Deadline for this report: Submittal within 90 days of grant/award expiration. Also, note that a summary Financial Statement shall be submitted within 45 days of the grant expiration. The final invoice and financial statement is due within 90 days of the grant/award expiration. Today’s date: 15 April 2014 Name of awardee/grantee: Bodil Bluhm OSRI Contract Number: 11-10-14 Project title: Data rescue: Epibenthic invertebrates from the Beaufort Sea sampled during WEBSEC and OCS cruises in the 1970s Dates project began and ended: PART I - Outline for Final Program or Technical Report This report must be submitted by all grantees. However, for those whose project work resulted in a peer reviewed publication (whether in draft or final form), this report may be abbreviated and the publication attached as part of the report. A. Non-technical Abstract or summary of project work that does not exceed 2 pages and includes an overview of the project. This abstract should describe the nature and significance of the project. It may be provided to the Advisory Board and could be used by OSRI staff to answer inquiries as to the nature and significance of the project. This project sought to rescue data on epibenthic invertebrates and fish sampled by trawls and photographs in the Alaskan Beaufort Sea during Western Beaufort Sea Ecological Cruise (WEBSEC) and Outer Continental Shelf (OCS) surveys in the 1970s. -
Deep-Sea Coral Taxa in the Alaska Region: Depth and Geographical Distribution (V
Deep-Sea Coral Taxa in the Alaska Region: Depth and Geographical Distribution (v. 2020) Robert P. Stone1 and Stephen D. Cairns2 1. NOAA Auke Bay Laboratories, Alaska Fisheries Science Center, Juneau, AK 2. National Museum of Natural History, Smithsonian Institution, Washington, DC This annex to the Alaska regional chapter in “The State of Deep-Sea Coral Ecosystems of the United States” lists deep-sea coral species in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the U.S. Alaska region (Figure 1). Deep-sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 meters deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is an update of the peer-reviewed 2017 list (Stone and Cairns 2017) and includes taxa recognized through 2020. Records are drawn from the published literature (including species descriptions) and from specimen collections that have been definitively identified by experts through examination of microscopic characters. Video records collected by the senior author have also been used if considered highly reliable; that is, in situ identifications were made based on an expertly identified voucher specimen collected nearby. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by suborder (if applicable), family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution, and are numbered accordingly. In summary, we have confirmed the presence of 142 unique coral taxa in Alaskan waters, including three species of alcyonaceans described since our 2017 list.