Genome-Scale Phylogeny and Contrasting Modes of Genome Evolution in the Fungal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variable Absorption of Mutational Trends by Prion-Forming Domains During Saccharomycetes Evolution
Variable absorption of mutational trends by prion-forming domains during Saccharomycetes evolution Paul M. Harrison Department of Biology, McGill University, Monteal, Quebec, Canada ABSTRACT Prions are self-propagating alternative states of protein domains. They are linked to both diseases and functional protein roles in eukaryotes. Prion-forming domains in Saccharomyces cerevisiae are typically domains with high intrinsic protein disorder (i.e., that remain unfolded in the cell during at least some part of their functioning), that are converted to self-replicating amyloid forms. S. cerevisiae is a member of the fungal class Saccharomycetes, during the evolution of which a large population of prion-like domains has appeared. It is still unclear what principles might govern the molecular evolution of prion-forming domains, and intrinsically disordered domains generally. Here, it is discovered that in a set of such prion-forming domains some evolve in the fungal class Saccharomycetes in such a way as to absorb general mutation biases across millions of years, whereas others do not, indicating a spectrum of selection pressures on composition and sequence. Thus, if the bias-absorbing prion formers are conserving a prion-forming capability, then this capability is not interfered with by the absorption of bias changes over the duration of evolutionary epochs. Evidence is discovered for selective constraint against the occurrence of lysine residues (which likely disrupt prion formation) in S. cerevisiae prion-forming domains as they evolve across Saccharomycetes. These results provide a case study of the absorption of mutational trends by compositionally biased domains, and suggest methodology for assessing selection pressures on the composition of intrinsically disordered regions. -
Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
| YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. -
Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). -
Biology of Fungi, Lecture 2: the Diversity of Fungi and Fungus-Like Organisms
Biology of Fungi, Lecture 2: The Diversity of Fungi and Fungus-Like Organisms Terms You Should Understand u ‘Fungus’ (pl., fungi) is a taxonomic term and does not refer to morphology u ‘Mold’ is a morphological term referring to a filamentous (multicellular) condition u ‘Mildew’ is a term that refers to a particular type of mold u ‘Yeast’ is a morphological term referring to a unicellular condition Special Lecture Notes on Fungal Taxonomy u Fungal taxonomy is constantly in flux u Not one taxonomic scheme will be agreed upon by all mycologists u Classical fungal taxonomy was based primarily upon morphological features u Contemporary fungal taxonomy is based upon phylogenetic relationships Fungi in a Broad Sense u Mycologists have traditionally studied a diverse number of organisms, many not true fungi, but fungal-like in their appearance, physiology, or life style u At one point, these fungal-like microbes included the Actinomycetes, due to their filamentous growth patterns, but today are known as Gram-positive bacteria u The types of organisms mycologists have traditionally studied are now divided based upon phylogenetic relationships u These relationships are: Q Kingdom Fungi - true fungi Q Kingdom Straminipila - “water molds” Q Kingdom Mycetozoa - “slime molds” u Kingdom Fungi (Mycota) Q Phylum: Chytridiomycota Q Phylum: Zygomycota Q Phylum: Glomeromycota Q Phylum: Ascomycota Q Phylum: Basidiomycota Q Form-Phylum: Deuteromycota (Fungi Imperfecti) Page 1 of 16 Biology of Fungi Lecture 2: Diversity of Fungi u Kingdom Straminiplia (Chromista) -
Comparative Genome Analysis Across a Kingdom of Eukaryotic Organisms: Specialization and Diversification in the Fungi
Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Comparative genome analysis across a kingdom of eukaryotic organisms: Specialization and diversification in the Fungi Michael J. Cornell,1,2 Intikhab Alam,1 Darren M. Soanes,3 Han Min Wong,3 Cornelia Hedeler,1 Norman W. Paton,1 Magnus Rattray,1 Simon J. Hubbard,2 Nicholas J. Talbot,3 and Stephen G. Oliver2,4,5,6 1School of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom; 2Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom; 3Department of Biosciences, University of Exeter EX4 4QD, United Kingdom; 4Department of Biochemistry, University of Cambridge, Cambridge CB2 1 GA, United Kingdom The recent proliferation of genome sequencing in diverse fungal species has provided the first opportunity for comparative genome analysis across a eukaryotic kingdom. Here, we report a comparative study of 34 complete fungal genome sequences, representing a broad diversity of Ascomycete, Basidiomycete, and Zygomycete species. We have clustered all predicted protein-encoding gene sequences from these species to provide a means of investigating gene innovations, gene family expansions, protein family diversification, and the conservation of essential gene functions—empirically determined in Saccharomyces cerevisiae—among the fungi. The results are presented with reference to a phylogeny of the 34 fungal species, based on 29 universally conserved protein-encoding gene sequences. We contrast this phylogeny with one based on gene presence and absence and show that, while the two phylogenies are largely in agreement, there are differences in the positioning of some species. -
The Numerical Taxonomy of Pathogenic Species of Candida
University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1985 The numerical taxonomy of pathogenic species of candida William James Crozier University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Crozier, William James, The numerical taxonomy of pathogenic species of candida, Master of Science thesis, Department of Biology, University of Wollongong, 1985. https://ro.uow.edu.au/theses/2618 Research Online is the open access institutional repository for the University of Wollongong. -
V.Woolleythesisfinalversion Corrections VWJWSR
A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/129924 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Elucidating the natural function of cordycepin, a secondary metabolite of the fungus Cordyceps militaris, and its potential as a novel biopesticide in Integrated Pest Management By Victoria Clare Woolley A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Life Sciences University of Warwick, School of Life Sciences September 2018 Table of Contents List of Figures ......................................................................................................... 1 List of Tables ........................................................................................................... 3 Abbreviations .......................................................................................................... 4 Acknowledgements .................................................................................................. 6 Declarations ............................................................................................................ 7 Abstract .................................................................................................................. -
Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity
Journal of Fungi Article Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity Daniel Peterson 1, Tang Li 2, Ana M. Calvo 1,* and Yanbin Yin 2,* 1 Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; [email protected] 2 Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA; [email protected] * Correspondence: [email protected] (A.M.C.); [email protected] (Y.Y.); Tel.: +1-(815)-753-0451 (A.M.C.); +1-(402)-472-4303 (Y.Y.) Abstract: Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest Citation: Peterson, D.; Li, T.; Calvo, occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are A.M.; Yin, Y. Categorization of Orthologous Gene Clusters in 92 also identified to have higher significance and occurrence in group-specific orthogroups. -
Reference Guide to the Classification of Fungi and Fungal-Like Protists, with Emphasis on the Fungal Genera with Medical Importance (Circa 2009)
Reference Guide to the Classification of Fungi and Fungal-like Protists, with Emphasis on the Fungal Genera with Medical Importance (circa 2009) This outline lists some common genera of fungi and fungal-like protists, which are classified into a number of phyla, subphyla, classes, subclasses and in most cases orders and families. The classification is patterned after the broad schemes of Hawksworth et al. (1), Kirk et al. (2), Eriksson et al. (3), Alexopoulos et al. (4), and Blackwell et al (5) and was devised by PJS to reflect his perception of the relationships of the various organisms traditionally studied by mycologists and included in textbooks and manuals dealing with mycology. The classification ranks below class reflect interpretations of Alexopoulos et al. (7), and PJS. It should be noted that different biologists until recently have had varying opinions on which organisms to include in the Kingdom Fungi and on what rank should be accorded each major group. This classification outline distributes the fungi and fungal-like organisms often dealt with in traditional mycology among the three kingdoms, Protozoa, Chromista and Fungi. With only a relatively few exceptions, the genera listed are very common or are of medical importance. However, not all genera of the Kingdom Fungi involved in human and animal medical mycology are listed. Kingdom: Protozoa/Amebozoa/Eumycetozoa (collection of numerous phyla of eukaryotic, generally wall- less, unicellular, plasmodial, or colonial phagotrophic microorganisms, which includes at least four fungal-like phyla that are no longer considered to be part of the Kingdom Fungi). These have all been reclassified and renamed to reflect their nonfungal nature (see for example Reading Sz 5, which discusses the reclassification of Rhinosporidium seeberi into the additional new Phylum Mezomycetozoea). -
A Curated Ortholog Database for Yeasts and Fungi Spanning 600 Million Years of Evolution
bioRxiv preprint doi: https://doi.org/10.1101/237974; this version posted October 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. AYbRAH: a curated ortholog database for yeasts and fungi spanning 600 million years of evolution Kevin Correia1, Shi M. Yu1, and Radhakrishnan Mahadevan1,2,* 1Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada, ON 2Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada Corresponding author: Radhakrishnan Mahadevan∗ Email address: [email protected] ABSTRACT Budding yeasts inhabit a range of environments by exploiting various metabolic traits. The genetic bases for these traits are mostly unknown, preventing their addition or removal in a chassis organism for metabolic engineering. To help understand the molecular evolution of these traits in yeasts, we created Analyzing Yeasts by Reconstructing Ancestry of Homologs (AYbRAH), an open-source database of predicted and manually curated ortholog groups for 33 diverse fungi and yeasts in Dikarya, spanning 600 million years of evolution. OrthoMCL and OrthoDB were used to cluster protein sequence into ortholog and homolog groups, respectively; MAFFT and PhyML were used to reconstruct the phylogeny of all homolog groups. Ortholog assignments for enzymes and small metabolite transporters were compared to their phylogenetic reconstruction, and curated to resolve any discrepancies. Information on homolog and ortholog groups can be viewed in the AYbRAH web portal (https://kcorreia.github. io/aybrah/) to review ortholog groups, predictions for mitochondrial localization and transmembrane domains, literature references, and phylogenetic reconstructions. -
One Fungus, Which Genes? Development and Assessment of Universal Primers for Potential Secondary Fungal DNA Barcodes
Persoonia 35, 2015: 242–263 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X689135 One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes J.B. Stielow1*, C.A. Lévesque2*, K.A. Seifert 2*, W. Meyer3*, L. Irinyi3, D. Smits1, R. Renfurm1, G.J.M. Verkley1, M. Groenewald1, D. Chaduli 4, A. Lomascolo 4,5, S. Welti6, L. Lesage-Meessen4, A. Favel4,5, A.M.S. Al-Hatmi1,7,24, U. Damm1,8, N. Yilmaz1,2, J. Houbraken1, L. Lombard1, W. Quaedvlieg1, M. Binder1, L.A.I. Vaas1,3,9, D. Vu1, A. Yurkov10, D. Begerow11, O. Roehl11, M. Guerreiro12, A. Fonseca12, K. Samerpitak1,13,24, A.D. van Diepeningen1, S. Dolatabadi1,24, L.F. Moreno1,24,25, S. Casaregola14, S. Mallet14, N. Jacques14, L. Roscini15, E. Egidi16,17, C. Bizet18,19, D. Garcia-Hermoso18,19, M.P. Martín 20, S. Deng 21, J.Z. Groenewald1, T. Boekhout 1,21, Z.W. de Beer 22, I. Barnes 23, T.A. Duong 23, M.J. Wingfield 22, G.S. de Hoog1,24,27, P.W. Crous1,22,26, C.T. Lewis 2, S. Hambleton2, T.A.A. Moussa27,28, H.S. Al-Zahrani 27, O.A. Almaghrabi27, G. Louis-Seize2, R. Assabgui 2, W. McCormick 2, G. Omer1, K. Dukik1, G. Cardinali15, U. Eberhardt 29,30, M. de Vries1, V. Robert1* Key words Abstract The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. -
Towards an Integrated Phylogenetic Classification of the Tremellomycetes
http://www.diva-portal.org This is the published version of a paper published in Studies in mycology. Citation for the original published paper (version of record): Liu, X., Wang, Q., Göker, M., Groenewald, M., Kachalkin, A. et al. (2016) Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in mycology, 81: 85 http://dx.doi.org/10.1016/j.simyco.2015.12.001 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1703 available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 81: 85–147. Towards an integrated phylogenetic classification of the Tremellomycetes X.-Z. Liu1,2, Q.-M. Wang1,2, M. Göker3, M. Groenewald2, A.V. Kachalkin4, H.T. Lumbsch5, A.M. Millanes6, M. Wedin7, A.M. Yurkov3, T. Boekhout1,2,8*, and F.-Y. Bai1,2* 1State Key Laboratory for Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; 2CBS Fungal Biodiversity Centre (CBS-KNAW), Uppsalalaan 8, Utrecht, The Netherlands; 3Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig 38124, Germany; 4Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia; 5Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA; 6Departamento de Biología y Geología, Física y Química Inorganica, Universidad Rey Juan Carlos, E-28933 Mostoles, Spain; 7Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden; 8Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China *Correspondence: F.-Y.