Syllabus for an Associate Degree Program in Applied Marine Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Influence of Marine Phytoplankton on Iodine Speciation in the Tropical and Southern Atlantic Ocean
The influence of marine phytoplankton on iodine speciation in the Tropical and Southern Atlantic Ocean Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Katrin Bluhm Kiel 2009 Referent/in: Prof. Dr. Karin Lochte Koreferent/in: Prof. Dr. Douglas Wallace Tag der mündlichen Prüfung: 12. Februar 2010 Zum Druck genehmigt: gez. Prof. Dr. Lutz Kipp, Dekan THIS THESIS IS BASED ON THE FOLLOWING MANUSCRIPTS: 1. Manuscript 1: K. Bluhm, P. L. Croot, J. Schafstall, T. Steinhoff, and K. Lochte. „Speciation of Iodine in the Mauritanian upwelling system and the adjacent Tropical Atlantic Ocean”, manuscript, 2009. Contribution: Katrin Bluhm performed the calculations, evaluated the data and wrote the paper. Peter L. Croot and Karin Lochte assisted with input to the manuscript and revision. Jens Schafstall provided the CTD data and assisted with the hydrography of the study area. Tobias Steinhoff did the flow velocity calculations of the water masses. 2. Manuscript 2: K. Bluhm, P. L. Croot, G. Rohardt, and K. Lochte. “Distribution of Iodide and Iodate in the Atlantic sector of the Southern Ocean during austral summer”, Deep Sea Research II, in revision, 2009. Contribution: Katrin Bluhm performed the calculations, evaluated the data and wrote the paper. Peter L. Croot and Karin Lochte assisted with input to the manuscript and revision. Gerd Rohardt provided the CTD data and assisted with the hydrography of the study area. 3. Manuscript 3: K. Bluhm, P. L. Croot, K. Wuttig, and K. Lochte. “Transformation of Iodate to Iodide in marine phytoplankton driven by cell senescence”, Marine Ecology Progress Series, submitted, 2009. -
Sverdrup's Critical Depth Concept & the Vernal Phytoplankton Bloom
EEOS 630 Biol. Ocean. Processes Chapter 11 Revised: 10/28/08 ©2008 E. D. Gallagher SVERDRUP’S CRITICAL DEPTH CONCEPT & THE VERNAL PHYTOPLANKTON BLOOM TABLE OF CONTENTS Page: List of Tables ............................................................................ 2 List of Figures ............................................................................ 2 Assignment...................................................................................... 2 Topics .................................................................................. 2 Required Readings ........................................................................ 2 Sverdrup, H. U. 1953 ............................................................... 2 Parsons, T. R., M. Takahashi, and B. Hargrave. 1984 . 2 Townsend, D. W. and R. W. Spinrad. 1986.............................................. 3 Recommended............................................................................ 3 Evans, G. T. and J. S. Parslow. 1985 ................................................... 3 Mann, K. H. and J. R. N. Lazier. 1991 ................................................. 3 Miller, C. B. 2004. ................................................................ 3 Mills, E. L. 1989 .................................................................. 3 Nelson, D. M. and W. O. Smith. 1991 .................................................. 3 Parsons, T. R., L. F. Giovando, and R. J. LeBrasseur. 1966 . 3 Siegel, D. A., S. C. Doney, and J. A. Yoder. 2002. 3 Smetacek, V. and U. Passow. 1990 -
DON As a Source of Bioavailable Nitrogen for Phytoplankton D
DON as a source of bioavailable nitrogen for phytoplankton D. A. Bronk, J. H. See, P. Bradley, L. Killberg To cite this version: D. A. Bronk, J. H. See, P. Bradley, L. Killberg. DON as a source of bioavailable nitrogen for phy- toplankton. Biogeosciences Discussions, European Geosciences Union, 2006, 3 (4), pp.1247-1277. hal-00297839 HAL Id: hal-00297839 https://hal.archives-ouvertes.fr/hal-00297839 Submitted on 7 Aug 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biogeosciences Discuss., 3, 1247–1277, 2006 Biogeosciences www.biogeosciences-discuss.net/3/1247/2006/ Discussions BGD © Author(s) 2006. This work is licensed 3, 1247–1277, 2006 under a Creative Commons License. Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Phytoplankton DON uptake D. A. Bronk et al. Title Page DON as a source of bioavailable nitrogen Abstract Introduction for phytoplankton Conclusions References Tables Figures D. A. Bronk1, J. H. See2, P. Bradley1, and L. Killberg1 J I 1Department of Physical Sciences, The College of William and Mary, Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA 23062, USA J I 2 Geo-Marine Inc., 550 East 15th Street, Plano, TX 75074, USA Back Close Received: 26 June 2006 – Accepted: 14 July 2006 – Published: 7 August 2006 Full Screen / Esc Correspondence to: D. -
BS Marine Biology Course Descriptions
UNIVERSITY OF TEXAS RIO GRANDE VALLEY BS Marine Biology Course Descriptions A – GENERAL EDUCATION CORE – 42 HOURS Students must fulfill the General Education Core requirements. The courses listed in this section satisfy both degree requirements and General Education core requirements. MATH 1343 Introduction to Biostatistics Topics include introduction to biostatistics; biological and health studies and designs; probability and statistical inferences; one- and two-sample inferences for means and proportions; one-way ANOVA and nonparametric procedures. Prerequisites: College Ready TSI status in Mathematics. OR MATH 1388 Honors Topics include introduction to biostatistics; biological and health studies and designs; probability and statistical inferences; one- and two-sample inferences for means and proportions; one-way ANOVA and nonparametric procedures. Prerequisites: College Ready TSI status in mathematics and admission to the honors program CHEM 1311 General Chemistry I Fundamentals of atomic structure, electronic structure and periodic table, nomenclature, the stoichiometry reactions, gas laws, thermochemistry, chemical bonding, and structure and geometry of molecules. Prerequisites: MATH 1314, MATH 1414, MATH 1342, MATH 1343, MATH 1388, MATH 2412, MATH 2413, or MATH 2487 with a grade of “C” or higher.” CHEM 1312 General Chemistry II This course presents the properties of liquids and solids, solutions-acid-base theory, chemical kinetics, equilibrium, chemical thermodynamics, electrochemistry, nuclear chemistry, and representative organic compounds. Prerequisites: CHEM 1311 PHIL 1366 Philosophy and History of Science and Technology This course is designed to use history and philosophy in the service of science and engineering education. It does this by examining a selection of notable episodes in the history of science and Techno-Science. -
Marine, Estuarine and Freshwater Biology Major (B.S.)
University of New Hampshire 1 MEFB 401 Marine Estuarine and Freshwater Biology: 1 MARINE, ESTUARINE AND Freshmen Seminar MEFB 503 Introduction to Marine Biology 4 FRESHWATER BIOLOGY MEFB 525 Introduction to Aquatic Botany 4 MAJOR (B.S.) MEFB 527 Aquatic Animal Diversity 4 Choose one Freshwater course: 4 http://colsa.unh.edu/dbs/mefb/marine-estuarine-and-freshwater-biology- MEFB 717 Lake Ecology bs or MEFB 719Field Studies in Lake Ecology Choose one Physiology/Function course: 4-5 Description ZOOL 625 Principles of Animal Physiology & ZOOL 626 and Animal Physiology Laboratory The Major in Marine, Estuarine and Freshwater Biology is intended to or ZOOL 773 Physiology of Fish give students interested in the fields of marine and freshwater biology Choose one Marine or Estuarine course: 4 the background to pursue careers, including potential advanced study, in MEFB 725 Marine Ecology this area of biology. The major builds on a broad set of basic scientific or ZOOL 750 Biological Oceanography courses represented by a core curriculum in math, chemistry, physics and biology. The background in basic science is combined with a series of MEFB Electives: Choose 3 required and elective courses in the aquatic sciences from watershed Evolution, Systematics and Biodiversity to ocean. The goal is to provide a solid foundation of knowledge in BIOL 566 Systematic Botany 4 freshwater, estuarine and marine biology while having the flexibility to GEN 713 Microbial Ecology and Evolution 4 focus on particular areas of scientific interest from molecular biology to MEFB 625 Introduction to Marine Botany 4 ecosystem studies. Students will have the opportunity to specialize in areas of their own interest, such as aquaculture and fisheries or animal MEFB 722 Marine Phycology 4 behavior. -
Coral Reef Algae
Coral Reef Algae Peggy Fong and Valerie J. Paul Abstract Benthic macroalgae, or “seaweeds,” are key mem- 1 Importance of Coral Reef Algae bers of coral reef communities that provide vital ecological functions such as stabilization of reef structure, production Coral reefs are one of the most diverse and productive eco- of tropical sands, nutrient retention and recycling, primary systems on the planet, forming heterogeneous habitats that production, and trophic support. Macroalgae of an astonish- serve as important sources of primary production within ing range of diversity, abundance, and morphological form provide these equally diverse ecological functions. Marine tropical marine environments (Odum and Odum 1955; macroalgae are a functional rather than phylogenetic group Connell 1978). Coral reefs are located along the coastlines of comprised of members from two Kingdoms and at least over 100 countries and provide a variety of ecosystem goods four major Phyla. Structurally, coral reef macroalgae range and services. Reefs serve as a major food source for many from simple chains of prokaryotic cells to upright vine-like developing nations, provide barriers to high wave action that rockweeds with complex internal structures analogous to buffer coastlines and beaches from erosion, and supply an vascular plants. There is abundant evidence that the his- important revenue base for local economies through fishing torical state of coral reef algal communities was dominance and recreational activities (Odgen 1997). by encrusting and turf-forming macroalgae, yet over the Benthic algae are key members of coral reef communities last few decades upright and more fleshy macroalgae have (Fig. 1) that provide vital ecological functions such as stabili- proliferated across all areas and zones of reefs with increas- zation of reef structure, production of tropical sands, nutrient ing frequency and abundance. -
Multi-System Analysis of Nitrogen Use by Phytoplankton and Heterotrophic Bacteria
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2009 Multi-system analysis of nitrogen use by phytoplankton and heterotrophic bacteria Paul B. Bradley College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Biogeochemistry Commons, and the Marine Biology Commons Recommended Citation Bradley, Paul B., "Multi-system analysis of nitrogen use by phytoplankton and heterotrophic bacteria" (2009). Dissertations, Theses, and Masters Projects. Paper 1539616580. https://dx.doi.org/doi:10.25773/v5-8hgt-2180 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Multi-System Analysis of Nitrogen Use by Phytoplankton and Heterotrophic Bacteria A Dissertation Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Paul B Bradley 2008 APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy r-/~p~J~ "--\ Paul B Bradle~ Approved, August 2008 eborah A. Bronk, Ph. Committee Chair/Advisor ~vVV Hugh W. Ducklow, Ph.D. ~gc~ Iris . Anderson, Ph.D. Lisa~~but Campbell, P . Department of Oceanography Texas A&M University College Station, Texas 11 DEDICATION Ami querida esposa, Silvia, por tu amor, apoyo, y paciencia durante esta aventura que has compartido conmigo, y A mi hijo, Dominic, por tu sonrisa y tus carcajadas, que pueden alegrar hasta el mas melanc61ico de los dias 111 TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ....................................................................... -
Primary Production of Microphytobenthos in the Ems-Dollard Estuary*
Vol. 14: 185-196. 1984 MARINE ECOLOGY - PROGRESS SERIES Published January 2 Mar. Ecol. Prog. Ser. I Primary production of microphytobenthos in the Ems-Dollard Estuary* Franciscus Colijn and Victor N. de Jonge Biological Research Ems-Dollard Estuary (BOEDE), Marine Botany Research Group, University of Groningen, Kerklaan 30, 751 1 NN Haren. The Netherlands ABSTRACT: From 1976 through 1978 primary production of microphytobenthos was measured at 6 stations on intertidal flats in the Ems-Dollard estuary using the 14C method. The purpose of the measurements was to estimate the annual primary production at different sites in the estuary and to investigate the factors that influence the rates of primary production. Therefore benthic chlorophyll a and a set of environmental factors were measured. Only primary production correlated sigruficantly with chlorophyll a concentration in the superficial (0.5 cm) sediment layer; other factors (temperature. in situ irradiance) did not correlate with primary production, primary production rate or assimilation number. Annual primary production ranged from ca. 50 g C m-' to 250 g C m-2 and was closely related to elevation of the tidal flat station. However, highest values were also recorded at the station closest to a waste water discharge point in the inner part of the estuary. Annual primary production can be roughly estimated from the mean annual content of chlorophyll a in the sediment. Use of different calculation methods results in annual primary production values that do not differ greatly from each other. Also productivity rates did not differ much over most of the estuary, except at the innermost station which showed a high production rate in combination with high microalgal biomass; this could not be explained by the high elevation of the station alone. -
BS in MARINE BIOLOGY -- MARINE CONSERVATION OPTION
B.S. in MARINE BIOLOGY -- MARINE CONSERVATION OPTION -- Catalog 2018-2019 (75 total hours) The Marine Conservation option provides a B.S. Marine Biology degree plan that is designed for students primarily interested in the biological aspects of conservation science in marine environments (e.g., community ecology, population biology, biogeography, conservation genetics and assessment of threatened or endangered species and habitats). A major in Marine Biology can be declared after completing 24 credit hours and BIO 201 and BIO 202, or equivalent courses, with a grade of ‘C’ (2.00) or better in both courses. Core Requirements: (28 hours total) _____ 201 Principles of Biology: Cells (4) _____ 202 Principles of Biology: Biodiversity (4) ***BIO 201 and 202 are the prerequisite courses for all biology courses numbered 300 and above*** _____ 335 Genetics with lab (3) (1), prerequisites: BIO 201 and BIO 202 _____ Physiology, chosen from one of the following bullets: • 325 Molecular Biology of the Cell with lab (3) (1), prerequisites: BIO 201, BIO 202, and CHM 211/CHML 211 • 340 Plant Physiology (4), prerequisites: BIO 201, BIO 202, and CHM 102 • 345 Animal Physiology with lab (3) (1), prerequisites: BIO 201, BIO 202, and CHM 102 _____ 362 Marine Biology (4), prerequisite or corequisite: BIO 366 _____ 366 Ecology with lab (3) (1), prerequisite: BIO 201 and BIO 202 _____ 466 Conservation Biology (3); prerequisites: BIO 201 and BIO 202 _____ 495 Seminar (1), prerequisites: BIO or MBY major; BIO 201, 202, 335, 366, and a physiology course _____ Applied Learning -- To satisfy the applied learning requirement for the B.S. -
THE PRIMARY PRODUCTION of a BRITISH COLUMBIA FJORD By
THE PRIMARY PRODUCTION OF A BRITISH COLUMBIA FJORD by MALVERN GILMARTIN B. A., Pomona College, 195^ M. Sc., University of Hawaii, 1956 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of BIOLOGY AND BOTANY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA June, i960 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of _kcy£b<9FM cwdl Wat Jinterstlg of ^rtttsb (Eoiuittiita GRADUATE STUDIES FACULTY OF GRADUATE STUDIES Field of Study: Biological Oceanography Phycology M. S. Doty mil Experimental Marine Botany M. S. Doty Marine Ecology : , S. Townsley Oceanography A. H. Banner PROGRAMME OF THE Taxonomy of Marine Invertebrates S. Townsley Marine Benthonic Organisms and their Environment, FINAL ORAL EXAMINATION FOR THE DEGREE OF R. F. Scagel Marine Phytoplankton R. F. Scagel DOCTOR OF PHILOSOPHY Marine Zooplankton R. F. Scagel of Biological Oceanography R. F. Scagel & W. A. Clemens MALVERN GILMARTIN JR. Other Studies: B.A. Pomona College, 1954 M.Sc. University of Hawaii, 1956 Biometry J. Sawyer IN ROOM 3332, BIOLOGICAL SCIENCES BUILDING Synoptic Oceanography G. -
Marine Plants in Coral Reef Ecosystems of Southeast Asia by E
Global Journal of Science Frontier Research: C Biological Science Volume 18 Issue 1 Version 1.0 Year 2018 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Marine Plants in Coral Reef Ecosystems of Southeast Asia By E. A. Titlyanov, T. V. Titlyanova & M. Tokeshi Zhirmunsky Institute of Marine Biology Corel Reef Ecosystems- The coral reef ecosystem is a collection of diverse species that interact with each other and with the physical environment. The latitudinal distribution of coral reef ecosystems in the oceans (geographical distribution) is determined by the seawater temperature, which influences the reproduction and growth of hermatypic corals − the main component of the ecosystem. As so, coral reefs only occupy the tropical and subtropical zones. The vertical distribution (into depth) is limited by light. Sun light is the main energy source for this ecosystem, which is produced through photosynthesis of symbiotic microalgae − zooxanthellae living in corals, macroalgae, seagrasses and phytoplankton. GJSFR-C Classification: FOR Code: 060701 MarinePlantsinCoralReefEcosystemsofSoutheastAsia Strictly as per the compliance and regulations of : © 2018. E. A. Titlyanov, T. V. Titlyanova & M. Tokeshi. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Marine Plants in Coral Reef Ecosystems of Southeast Asia E. A. Titlyanov α, T. V. Titlyanova σ & M. Tokeshi ρ I. Coral Reef Ecosystems factors for the organisms’ abundance and diversity on a reef. -
Phytoplankton Sampling in Quantitative Baseline and Monitoring Programs
W&M ScholarWorks Reports 2-1978 Phytoplankton Sampling in Quantitative Baseline and Monitoring Programs Paul E. Stofan Virginia Institute of Marine Science George C. Grant Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons Recommended Citation Stofan, P. E., & Grant, G. C. (1978) Phytoplankton Sampling in Quantitative Baseline and Monitoring Programs. Special Scientific Report: no. 85. Virginia Institute of Marine Science, College of William and Mary. http://dx.doi.org/doi:10.21220/m2-r64t-f518 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. EPA-600/3-78-025 February 1978 Ecological Research Series RESEARCH REPORTING SERIES Research reports of the Office of Research and Development. U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad cate gories were established to facilitate further development and application of en vironmental technology. Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are: 1. Environmental Health Effects Research 2. Environmental Protection Technology 3. Ecological Research 4. Environmental Monitoring 5. Socioeconomic Environmental Studies 6. Scientific and Technical Assessment Reports (STAR) 7. Interagency Energy-Environment Research and Development 8. "Special" Reports 9. Miscellaneous Reports This report has been assigned to thE~ ECOLOGICAL RESEARCH series. This series describes research on the effects of pollution on humans, plant and animal spe cies, and materials.