The Non‐Neuronal and Nonmuscular Effects of Botulinum Toxin

Total Page:16

File Type:pdf, Size:1020Kb

The Non‐Neuronal and Nonmuscular Effects of Botulinum Toxin BJD REVIEW ARTICLE British Journal of Dermatology The non-neuronal and nonmuscular effects of botulinum toxin: an opportunity for a deadly molecule to treat disease in the skin and beyond* S.A. Grando iD and C.B. Zachary Department of Dermatology, University of California, Irvine, Irvine, CA, U.S.A. Linked Comment: Ozog. Br J Dermatol 2018; 178:999. Summary Correspondence There is growing evidence that botulinum neurotoxins (BoNTs) exhibit biological Sergei A. Grando. effects on various human cell types with a host of associated clinical implications. E-mail: [email protected] This review aims to provide an update on the non-neuronal and nonmuscular Accepted for publication effects of botulinum toxin. We critically analysed recent reports on the structure 16 October 2017 and function of cellular signalling systems subserving biological effects of BoNTs. The BoNT receptors and intracellular targets are not unique for neurotransmission. Funding sources They have been found in both neuronal and non-neuronal cells, but there are None. differences in how BoNT binds to, and acts on, neuronal vs. non-neuronal cells. The non-neuronal cells that express one or more BoNT/A-binding proteins, and/or Conflicts of interest None to declare. cleavage target synaptosomal-associated protein 25, include: epidermal ker- atinocytes; mesenchymal stem cells from subcutaneous adipose; nasal mucosal cells; *Plain language summary available online urothelial cells; intestinal, prostate and alveolar epithelial cells; breast cell lines; neutrophils; and macrophages. Serotype BoNT/A can also elicit specific biological DOI 10.1111/bjd.16080 effects in dermal fibroblasts, sebocytes and vascular endothelial cells. Nontraditional applications of BoNT have been reported for the treatment of the following derma- tological conditions: hyperhidrosis, Hailey–Hailey disease, Darier disease, inversed psoriasis, aquagenic palmoplantar keratoderma, pachyonychia congenita, multiple eccrine hydrocystomas, eccrine angiomatous hamartoma, eccrine sweat gland naevi, congenital eccrine naevus, Raynaud phenomenon and cutaneous leiomy- omas. Experimental studies have demonstrated the ability of BoNT/A to protect skin flaps, facilitate wound healing, decrease thickness of hypertrophic scars, produce an anti-ageing effect, improve a mouse model of psoriasiform dermatitis, and have also revealed extracutaneous effects of BoNT arising from its anti-inflam- matory and anticancer properties. BoNTs have a much wider range of applications than originally understood, and the individual cellular responses to the cholinergic impacts of BoNTs could provide fertile ground for future studies. What’s already known about this topic? • Botulinum neurotoxins (BoNTs) have been used therapeutically in different medi- cal conditions, predominantly in relation to muscle relaxation. What does this study add? • Recent research indicates that serotype BoNT/A can also elicit specific biological effects in skin cells, leading to profound clinical changes in dermatological conditions. • BoNTs appear to have a wider range of applications than originally understood. © 2017 British Association of Dermatologists British Journal of Dermatology (2018) 178, pp1011–1019 1011 1012 Applications of botulinum toxins in dermatology, S.A. Grando and C.B. Zachary (Fig. 1). However, the BoNT receptors and intracellular targets The structure and function of botulinum are not unique for neurotransmission, as several of these neurotoxins receptors and targets have been found in both neuronal and non-neuronal cells. The structure of botulinum neurotoxins In nature, botulinum neurotoxin (BoNT) is produced by The non-neuronal cell types targeted by botulinum Clostridium botulinum bacteria. The distinct toxin subtypes, desig- neurotoxin nated A through G, have different structures and mechanisms of action. The A, B and E subtypes cause botulism in humans Based on published data, several types of non-neuronal cells owing to their action inside the axon terminal, leading to may be directly affected by BoNT in human skin and other paralysis of the respiratory muscles and death resulting from tissues that produce a biological effect. The cells expressing respiratory failure. Pure botulinum toxin A was first synthe- one or more of the BoNT/A-binding proteins SV2, FGFR3 or sized as an inactive 150-kDa protein complexed with varying vanilloid receptors, and/or BoNT/A cleavage target SNAP-25, 7,8 amounts of nontoxic companion proteins. Botulinum neuro- include epidermal keratinocytes, mesenchymal stem cells 9 10 toxin is activated when the polypeptide chain is proteolytically from subcutaneous adipose, nasal mucosal cells, urothelial 11 12,13 14 cleaved into the 100 kDa heavy chain and the 50 kDa light cells, intestinal epithelial cells, prostate epithelial cells, 15 chain. The nontoxic BoNT-associated proteins include three alveolar epithelial cells, T47D, MDA-MB-231 and MDA-MB- 16 17 18 haemagglutinin (HA) proteins and one nontoxic non-HA pro- 453 breast cell lines, neutrophils and macrophages. tein. In nature, it is believed that these associated proteins pro- Importantly, it has been reported that, in addition to SNAP- 11,19,20 tect the inherently fragile BoNTs from the hostile environment 25, BoNT/A can also cleave SNAP-23, which is ubiqui- 21 of the gastrointestinal tract and help BoNTs pass through the tously expressed in human tissues. BoNT/A can inhibit SV2 16 intestinal epithelial barrier before they are released into gen- expression in breast cancer cell lines. Moreover, as will be eral circulation (reviewed by Peng Chen et al.).1 discussed in detail below, BoNT/A can elicit specific biological effects in dermal fibroblasts, mast cells, sebocytes and vascular Mechanism of action of botulinum neurotoxin endothelial cells. With regard to muscle contraction under normal conditions, Differences in botulinum neurotoxin binding to neuronal depolarization of the axon terminal results in acetylcholine vs. non-neuronal cells release from the cytosol of cholinergic neurons into the synap- tic cleft with subsequent muscular contraction. Various BoNT There is growing evidence regarding the differences in how subtypes will inhibit this acetylcholine release, blocking the BoNT binds to and acts on neuronal vs. non-neuronal cells.22 induction of muscular contraction. This blockade of acetyl- For example, the BoNT/A heavy chain enters neuronal cells choline release is referred to as ‘chemical denervation’. For mainly via a clathrin-dependent pathway, in contrast to exocrine tissue, glandular secretion is blocked. intestinal cells where it follows a Cdc42-dependent pathway.12 Acetylcholine release is performed by proteins from the sol- HA, one of the nontoxic components of BoNT large protein uble N-ethylmaleimide-sensitive factor attachment receptor complexes, disrupts the intercellular epithelial barrier by (SNARE), which mediates synaptic vesicle docking/fusion directly binding E-cadherin.3 It has been demonstrated that with the inner surface of axonal plasma membrane at the binding of the HA complex sequesters E-cadherin in the release sites. However, the inhibition of acetylcholine exocyto- monomeric state, compromising the E-cadherin-mediated sis is reversible by natural SNARE protein complex turnover. intercellular barrier and facilitating paracellular absorption of The toxic mechanism of action of BoNT comprises several BoNT/A and BoNT/B.4,23 In contrast, BoNT/C HA disrupts distinct steps. The internalization of BoNT is achieved by the barrier function by affecting cell morphology and viability endocytosis after the toxin’s heavy chain has attached to cell- in a ganglioside GM3-dependent manner.24 surface structures specifically found on cholinergic nerve ter- minals, such as ganglioside moieties, a vesicular protein (SV2) Differences in botulinum neurotoxin action on neuronal for BoNT/A and synaptotagmin for BoNT/B (reviewed in vs. non-neuronal cells Peng Chen et al. and Giordano et al.).1,2 BoNT/A can also attach to some other cell-surface proteins, such as E-cad- BoNT/A exhibits differential effects on gene expression in 3,4 5 herin, fibroblast growth factor receptor (FGFR)3 and vanil- neuronal and non-neuronal cells. Microarray analysis of gene- 6 loid receptors. The light chain, which has zinc expression changes upon exposure to BoNT/A revealed that in metalloprotease activity at its N-terminal, is released from the human HT-29 colon carcinoma cells, 167 genes were upregu- endocytotic vesicles upon acidification, and then reaches the lated while 60 genes were downregulated, whereas in cytosol wherein it cleaves one or two SNARE proteins, such as SH-SY5Y neuroblastoma cells, about 223 genes were upregu- synaptosomal-associated protein (SNAP)-25 (BoNT/A, C and lated and 18 genes were downregulated.25 Modulation of E), syntaxin (BoNT/C) and vesicle-associated membrane pro- genes and pathways involved in neuroinflammatory ubiquitin- tein also known as synaptobrevin II (BoNT/B, F and G) proteasome degradation, phosphatidylinositol, calcium British Journal of Dermatology (2018) 178, pp1011–1019 © 2017 British Association of Dermatologists Applications of botulinum toxins in dermatology, S.A. Grando and C.B. Zachary 1013 G=ganglioside P=protein Syt and SV2 isoforms *=other proteins, e.g. E-cadherin, FGFR3, vanilloid receptor Fig 1. Molecular mechanisms of botulinum neurotoxins (BoNT) action (modified from Peng Chen et al.).1 BoNT subtypes inhibit the release of acetylcholine (ACh) from the synaptic vesicle of the nerve ending into the synaptic
Recommended publications
  • MATRIX METALLOPROTEINASE REQUIREMENTS for NEUROMUSCULAR SYNAPTOGENESIS by Mary Lynn Dear Dissertation Submitted to the Faculty O
    MATRIX METALLOPROTEINASE REQUIREMENTS FOR NEUROMUSCULAR SYNAPTOGENESIS By Mary Lynn Dear Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences January 31, 2018 Nashville, Tennessee Approved: Todd Graham, Ph.D. Kendal Broadie, Ph.D. Katherine Friedman, Ph.D. Barbara Fingleton, Ph.D. Jared Nordman, Ph.D. Copyright © 2018 by Mary Lynn Dear All Rights Reserved ACKNOWLEDGEMENTS I would like to acknowledge my advisor, Kendal Broadie, and the entire Broadie laboratory, both past and present, for their endless support, engaging conversations, thoughtful suggestions and constant encouragement. I would also like to thank my committee members both past and present for playing such a pivotal role in my graduate career and growth as a scientist. I thank the Department of Biological Sciences for fostering my graduate education. I thank the entire protease community for their continued support, helpful suggestions and collaborative efforts that helped my project move forward. I would like to acknowledge Dr. Andrea Page-McCaw and her entire laboratory for helpful suggestions, being engaged in my studies and providing many tools that were invaluable to my project. I thank my parents, Leisa Justus and Raymond Dear, my brother Jake Dear and my best friend Jenna Kaufman. Words cannot describe how grateful I am for your support and encouragement. Most importantly, I would like to thank my husband, Jeffrey Thomas, for always believing in me, your unwavering support and for helping me endure all the ups and downs that come with graduate school.
    [Show full text]
  • What Are the Roles of Metalloproteinases in Cartilage and Bone Damage? G Murphy, M H Lee
    iv44 Ann Rheum Dis: first published as 10.1136/ard.2005.042465 on 20 October 2005. Downloaded from REPORT What are the roles of metalloproteinases in cartilage and bone damage? G Murphy, M H Lee ............................................................................................................................... Ann Rheum Dis 2005;64:iv44–iv47. doi: 10.1136/ard.2005.042465 enzyme moiety into an upper and a lower subdomain. A A role for metalloproteinases in the pathological destruction common five stranded beta-sheet and two alpha-helices are in diseases such as rheumatoid arthritis and osteoarthritis, always found in the upper subdomain with a further C- and the irreversible nature of the ensuing cartilage and bone terminal helix in the lower subdomain. The catalytic sites of damage, have been the focus of much investigation for the metalloproteinases, especially the MMPs, have been several decades. This has led to the development of broad targeted for the development of low molecular weight spectrum metalloproteinase inhibitors as potential therapeu- synthetic inhibitors with a zinc chelating moiety. Inhibitors tics. More recently it has been appreciated that several able to fully differentiate between individual enzymes have families of zinc dependent proteinases play significant and not been identified thus far, although a reasonable level of varied roles in the biology of the resident cells in these tissues, discrimination is now being achieved in some cases.7 Each orchestrating development, remodelling, and subsequent family does, however, have other unique domains with pathological processes. They also play key roles in the numerous roles, including the determination of physiological activity of inflammatory cells. The task of elucidating the substrate specificity, ECM, or cell surface localisation (fig 1).
    [Show full text]
  • ADAM17 Targets MMP-2 and MMP-9 Via EGFR-MEK-ERK Pathway Activation to Promote Prostate Cancer Cell Invasion
    1714 INTERNATIONAL JOURNAL OF ONCOLOGY 40: 1714-1724, 2012 ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion LI-JIE XIAO1,2*, PING LIN1*, FENG LIN1*, XIN LIU1, WEI QIN1, HAI-FENG ZOU1, LIANG GUO1, WEI LIU1, SHU-JUAN WANG1 and XIAO-GUANG YU1 1Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, 194 Xuefu Road, Harbin 150081, Heilongjiang; 2College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing 163319, Heilongjiang, P.R. China Received September 8, 2011; Accepted November 18, 2011 DOI: 10.3892/ijo.2011.1320 Abstract. ADAM17, also known as tumor necrosis factor-α released and down-regulation of MMP-2, MMP-9. However, converting enzyme (TACE), is involved in proteolytic ectodo- these effects could be reversed by simultaneous addition of main shedding of cell surface molecules and cytokines. TGF-α. These data demonstrated that ADAM17 contributes to Although aberrant expression of ADAM17 has been shown androgen-independent prostate cancer cell invasion by shed- in various malignancies, the function of ADAM17 in prostate ding of EGFR ligand TGF-α, which subsequently activates the cancer has not been clarified. In the present study, we sought EGFR-MEK-ERK signaling pathway, leading finally to over- to elucidate whether ADAM17 contributes to prostate cancer expression of MMP-2 and MMP-9. This study suggests that the cell invasion, as well as the mechanism involved in the process. ADAM17 expression level may be a new predictive biomarker The expression pattern of ADAM17 was investigated in human of invasion and metastasis of prostate cancer, and ADAM17 prostate cancer cells.
    [Show full text]
  • Matrix Metalloproteinases in Angiogenesis: a Moving Target for Therapeutic Intervention
    Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention William G. Stetler-Stevenson J Clin Invest. 1999;103(9):1237-1241. https://doi.org/10.1172/JCI6870. Perspective Angiogenesis is the process in which new vessels emerge from existing endothelial lined vessels. This is distinct from the process of vasculogenesis in that the endothelial cells arise by proliferation from existing vessels rather than differentiating from stem cells. Angiogenesis is an invasive process that requires proteolysis of the extracellular matrix and, proliferation and migration of endothelial cells, as well as synthesis of new matrix components. During embryonic development, both vasculogenesis and angiogenesis contribute to formation of the circulatory system. In the adult, with the single exception of the reproductive cycle in women, angiogenesis is initiated only in response to a pathologic condition, such as inflammation or hypoxia. The angiogenic response is critical for progression of wound healing and rheumatoid arthritis. Angiogenesis is also a prerequisite for tumor growth and metastasis formation. Therefore, understanding the cellular events involved in angiogenesis and the molecular regulation of these events has enormous clinical implications. This understanding is providing novel therapeutic targets for the treatment of a variety of diseases, including cancer. Whatever the pathologic condition, an initiating stimulus results in the formation of a migrating solid column of endothelial cells called the vascular sprout. The advancing front of this endothelial cell column presumably focuses proteolytic activity to create a defect in the extracellular matrix, through which the advancing and proliferating column of endothelial […] Find the latest version: https://jci.me/6870/pdf Matrix metalloproteinases in angiogenesis: Perspective a moving target for therapeutic intervention SERIES Topics in angiogenesis David A.
    [Show full text]
  • Gent Forms of Metalloproteinases in Hydra
    Cell Research (2002); 12(3-4):163-176 http://www.cell-research.com REVIEW Structure, expression, and developmental function of early diver- gent forms of metalloproteinases in Hydra 1 2 3 4 MICHAEL P SARRAS JR , LI YAN , ALEXEY LEONTOVICH , JIN SONG ZHANG 1 Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City, Kansas 66160- 7400, USA 2 Centocor, Malvern, PA 19355, USA 3 Department of Experimental Pathology, Mayo Clinic, Rochester, MN 55904, USA 4 Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA ABSTRACT Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydro- lytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution. In this regard, studies from various laboratories have reported that a number of classes of metalloproteinases are found in hydra, a member of Cnidaria, the second oldest of existing animal phyla. These studies demonstrate that the hydra genome contains at least three classes of metalloproteinases to include members of the 1) astacin class, 2) matrix metalloproteinase class, and 3) neprilysin class. Functional studies indicate that these metalloproteinases play diverse and important roles in hydra morphogenesis and cell differentiation as well as specialized functions in adult polyps. This article will review the structure, expression, and function of these metalloproteinases in hydra. Key words: Hydra, metalloproteinases, development, astacin, matrix metalloproteinases, endothelin.
    [Show full text]
  • Functional and Structural Insights Into Astacin Metallopeptidases
    Biol. Chem., Vol. 393, pp. 1027–1041, October 2012 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/hsz-2012-0149 Review Functional and structural insights into astacin metallopeptidases F. Xavier Gomis-R ü th 1, *, Sergio Trillo-Muyo 1 Keywords: bone morphogenetic protein; catalytic domain; and Walter St ö cker 2, * meprin; metzincin; tolloid; zinc metallopeptidase. 1 Proteolysis Lab , Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028 Barcelona , Spain Introduction: a short historical background 2 Institute of Zoology , Cell and Matrix Biology, Johannes Gutenberg University, Johannes-von-M ü ller-Weg 6, The fi rst report on the digestive protease astacin from the D-55128 Mainz , Germany European freshwater crayfi sh, Astacus astacus L. – then termed ‘ crayfi sh small-molecule protease ’ or ‘ Astacus pro- * Corresponding authors tease ’ – dates back to the late 1960s (Sonneborn et al. , 1969 ). e-mail: [email protected]; [email protected] Protein sequencing by Zwilling and co-workers in the 1980s did not reveal homology to any other protein (Titani et al. , Abstract 1987 ). Shortly after, the enzyme was identifi ed as a zinc met- allopeptidase (St ö cker et al., 1988 ), and other family mem- The astacins are a family of multi-domain metallopepti- bers emerged. The fi rst of these was bone morphogenetic β dases with manifold functions in metabolism. They are protein 1 (BMP1), a protease co-purifi ed with TGF -like either secreted or membrane-anchored and are regulated growth factors termed bone morphogenetic proteins due by being synthesized as inactive zymogens and also by co- to their capacity to induce ectopic bone formation in mice localizing protein inhibitors.
    [Show full text]
  • MMP-9) on the Metastatic Behavior of Oropharyngeal Cancer
    ANTICANCER RESEARCH 25: 4129-4134 (2005) Influence of Matrix Metalloproteinase 9 (MMP-9) on the Metastatic Behavior of Oropharyngeal Cancer A.A. DÜNNE1, A. GRÖBE1, A.M. SESTERHENN1, P. BARTH2, C. DALCHOW1 and J.A. WERNER1 1Department of Otolaryngology, Head and Neck Surgery and 2Department of Pathology, Philipps University of Marburg, Marburg, Germany Abstract. Background: The role of the single matrix molecular biological factors have been proposed for their metalloproteinases (MMPs) in the metastatic process of possible impact on the lymphogenic metastatic process. squamous cell carcinomas (SCC) is still obscure. Materials In this context, special interest is being paid to a better and Methods: The MMP-9 expression was described knowledge of the matrix metalloproteinases (MMPs) (5), immunohistochemically in 105 patients (40-79 years of age, that are involved in the physiology of reconstruction and mean: 57.84 years; 84 male, 21 female) suffering from renewal processes of surrounding tissue. In particular, MMP- oropharyngeal cancer (22x T1, 31x T2, 24x T3, 28x T4) with 2 and -9, originating from the subfamily of gelatinases, seem different neck stages (41x N0, 6x N1, 54x N2, 4x N3 neck). to play important roles in the metastatic process of several Results: A significant correlation between MMP-9 expression carcinomas (6, 7), including not only SCC of the head and and T stage (p<0.05), N stage (r=0.55, p<0.01) and UICC neck (8), but also malignant tumors of the lung (9), the stage (r=0.55, p<0.01) was revealed. Most remarkable was the prostate (10), the colon (11) and the bladder (12).
    [Show full text]
  • Identification of the Membrane-Type Matrix Metalloproteinase MT1-MMP
    Journal of Cell Science 110, 589-596 (1997) 589 Printed in Great Britain © The Company of Biologists Limited 1997 JCS9564 Identification of the membrane-type matrix metalloproteinase MT1-MMP in osteoclasts Takuya Sato1, Maria del Carmen Ovejero1, Peng Hou1, Anne-Marie Heegaard1, Masayoshi Kumegawa2, Niels Tækker Foged1 and Jean-Marie Delaissé1,* 1Department of Basic Research, Center for Clinical & Basic Research, Ballerup Byvej 222, DK-2750 Ballerup, Denmark 2The First Department of Oral Anatomy, Meikai University School of Dentistry, Keyakidai 1-1, Sakado, Saitama 350-02, Japan *Author for correspondence SUMMARY The osteoclasts are the cells responsible for bone resorp- on bone sections showed that MT1-MMP is expressed also tion. Matrix metalloproteinases (MMPs) appear crucial in osteoclasts in vivo. Antibodies recognizing MT1-MMP for this process. To identify possible MMP expression in reacted with specific plasma membrane areas corre- osteoclasts, we amplified osteoclast cDNA fragments sponding to lamellipodia and podosomes involved, respec- having homology with MMP genes, and used them as a tively, in migratory and attachment activities of the osteo- probe to screen a rabbit osteoclast cDNA library. We clasts. These observations highlight how cells might bring obtained a cDNA of 1,972 bp encoding a polypeptide of MT1-MMP into contact with focal points of the extracel- 582 amino acids that showed more than 92% identity to lular matrix, and are compatible with a role of MT1- human, mouse, and rat membrane-type 1 MMP (MT1- MMP in migratory and attachment activities of the osteo- MMP), a cell surface proteinase believed to trigger cancer clast. cell invasion. By northern blotting, MT1-MMP was found to be highly expressed in purified osteoclasts when compared with alveolar macrophages and bone stromal Key words: Osteoclast, MMP-14, MT1-MMP, Membrane proteinase, cells, as well as with various tissues.
    [Show full text]
  • Matrix Metalloproteinase -9, Human Recombinant, Expressed in Transfected Cells
    Matrix Metalloproteinase -9, human recombinant, expressed in transfected cells Catalog Number M4809 Storage Temperature –70 °C EC 3.4.24.35 All MMPs are synthesized as proenzymes, and most of Synonyms: MMP-9; Gelatinase-B; 95 kDa Gelatinase them are secreted from the cells as proenzymes. Thus, the activation of these proenzymes is a critical step that Product Description leads to extracellular matrix breakdown. Human Matrix Metalloproteinase-9 (MMP-9) is a matrix metalloproteinase that has been substrate-affinity MMPs are considered to play an important role in purified from transfected cells (pro and active forms). wound healing, apoptosis, bone elongation, embryo development, uterine involution, angiogenesis,5 and Matrix Metalloproteinase-9 (MMP-9) may be used in tissue remodeling, and in diseases such as multiple various immunochemical techniques such as sclerosis,3,6 Alzheimer’s,3 malignant gliomas,3 lupus, immunoblotting, ELISA, enzyme kinetics assays, and arthritis, periodontis, glomerulonephritis, athero- substrate assays. This preparation consists primarilay sclerosis, tissue ulceration, and in cancer cell invasion of the proenzyme form, with a small amount of active and metastasis.7 Numerous studies have shown that enzyme and TIMP present. The following bands may be there is a close association between expression of detected: various members of the MMP family by tumors and MMP-9 Proenzyme (>85%) at ~88 kDa non-reduced their proliferative and invasive behavior and metastatic and 92 kDa reduced potential. minor band (MMP-9 dimer) at ~180 kDa intermediate active form (very small amounts) at The tissue inhibitors of metalloproteinases (TIMPs) are ~84 kDa non-reduced naturally occurring proteins that specifically inhibit mature active form (very small amounts) at 82 kDa matrix metalloproteinases and regulate extracellular non-reduced matrix turnover and tissue remodeling by forming tight - TIMP-1 (~10%) at 28 kDa binding inhibitory complexes with the MMPs.
    [Show full text]
  • Expression of Matrix Metalloproteinase (MMP)-2 and MMP-9 in Breast Cancer with a Special Reference to Activator Protein-2, HER2, and Prognosis
    Vol. 10, 7621–7628, November 15, 2004 Clinical Cancer Research 7621 Expression of Matrix Metalloproteinase (MMP)-2 and MMP-9 in Breast Cancer with a Special Reference to Activator Protein-2, HER2, and Prognosis Johanna M. Pellikainen,1,2,3 Kirsi M. Ropponen,2 positive disease. In the univariate survival analysis, positive Vesa V. Kataja,3 Jari K. Kellokoski,4 stromal MMP-9 predicted shorter recurrence-free survival and breast cancer-related survival (0.0389 ؍ RFS; P) 1,2,3,6 5 ؉ ؍ Matti J. Eskelinen, and Veli-Matti Kosma 1 (BCRS; P 0.0081) in ER disease, especially in the sub- ؍ > Department of Pathology and Forensic Medicine, University of ؉ 2 3 group of ER tumors of 2 cm in diameter (T1; P 0.0031 ؍ ,Kuopio, Kuopio, Finland; Departments of Pathology, Oncology 4Otorhinolaryngology, Oral and Maxillofacial Unit, and 5Surgery, for RFS, and P 0.0089 for BCRS). High MMP-9 expres- in the (0.0351 ؍ Kuopio University Hospital, Kuopio, Finland; and 6Department of sion in cancer cells predicted longer RFS (P Pathology, Centre for Laboratory Medicine, University of Tampere whole patient group. In the multivariate analysis of the and Tampere University Hospital, Tampere, Finland whole patient group, the independent predictors of shorter RFS were reduced MMP-9 expression in carcinoma cells ؍ ؍ ABSTRACT (P 0.0248), HER2 overexpression (P 0.0001), and ad- -Shorter BCRS was pre .(0.0002 ؍ vanced-stage disease (P Purpose: In the present study, we investigated the ex- dicted by advanced-stage disease (P < 0.0001). pression and prognostic value of matrix metalloproteinase Conclusions: Expression of MMP-2 and MMP-9 in (MMP)-2 and MMP-9 in breast cancer as well as their breast cancer seems to be partly related to expression of relation to transcription factor activator protein (AP)-2 AP-2 and HER2.
    [Show full text]
  • Methods for Detection of Matrix Metalloproteinases As Biomarkers in Cardiovascular Disease Viorica Lopez-Avila
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Biology Faculty Publications Biology 2008 Methods for Detection of Matrix Metalloproteinases as Biomarkers in Cardiovascular Disease Viorica Lopez-Avila Juliet Spencer University of San Francisco, [email protected] Follow this and additional works at: http://repository.usfca.edu/biol_fac Part of the Biology Commons, and the Cardiovascular Diseases Commons Recommended Citation Lopez-Avila, V and Spencer, JV. Methods for Detection of Matrix Metalloproteinases as Biomarkers in Cardiovascular Disease. Clinical Medicine Insights: Cardiology 2008:2 75-87. This Article is brought to you for free and open access by the Biology at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. REVIEW Methods for Detection of Matrix Metalloproteinases as Biomarkers in Cardiovascular Disease Viorica Lopez-Avila1 and Juliet V. Spencer2 1Agilent Technologies, Santa Clara, CA 95051, U.S.A. 2University of San Francisco, San Francisco, CA 94403, U.S.A. Abstract: Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes that degrade extracel- lular matrix (ECM) components like collagen, fi bronectin, and laminin. While this activity is important for normal develop- ment, morphogenesis, and wound healing, deregulation of MMP activity has been implicated in a number of cardiovascular diseases, including congenital heart defects, atherosclerosis, myocardial infarction, and congestive heart failure. MMPs are good potential diagnostic indicators of cardiovascular disease, but current detection methods are time consuming and quite laborious.
    [Show full text]
  • Matrix Metalloproteinase-3, Catalytic Domain (M9320)
    Matrix Metalloproteinase-3, Catalytic Domain human, recombinant expressed in E. coli Catalog Number M9320 Storage Temperature -70 °C EC 3.4.24.17 Matrix Metalloproteinase-3 (MMP-3) degrades a wide range of substrates, including gelatin, type IV, V, IX, Synonyms: MMP-3; Stromelysin-1; Transin; and X collagens, elastin, laminin, vitronectin, casein, Proteoglycanase fibronectin, proteoglycans, aggrecan, myelin basic protein, and a-1-antitrypsin.8,9 MMP-3 can be induced Product Description by cytokines IL-1b and TNF-a, by growth factors EGF, The matrix metalloproteinases (MMPs) are a family of PDGF, and IGFBP-3, and by the tumor promotor PMA. at least eighteen secreted and membrane-bound zinc- Its expression is inhibited by TGF-b and by all-trans endopeptidases. Collectively, these enzymes can retinoic acid (RA). The MMP-3 substrate repertoire degrade all the components of the extracellular matrix, extends beyond the extracellular matrix proteins and including fibrillar and non-fibrillar collagens, fibro- suggests that MMP-3 has additional roles other than in nectin, laminin and basement membrane glyco- direct tissue remodeling (i.e., enzyme cascades and proteins. In general, a signal peptide, a propeptide, cytokine regulation). and a catalytic domain containing the highly conserved zinc-binding site characterize the structure of the MMP-3 does not cleave the triple helical region of the MMPs. In addition, fibronectin-like repeats, a hinge interstitial collagens, which is a characteristic that region, and a C-terminal hemopexin-like domain allow distinguishes the stromelysins from the collagenases. categorization of MMPs into the collagenase, gela- Structurally, MMP-3 is divided into several distinct tinase, stomelysin and membrane-type MMP sub- domains: a pro-domain which is cleaved upon 1-4 families.
    [Show full text]