The Evolving Erythrocyte: Red Blood Cells As Modulators of Innate Immunity H

Total Page:16

File Type:pdf, Size:1020Kb

The Evolving Erythrocyte: Red Blood Cells As Modulators of Innate Immunity H The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity H. Luke Anderson, Igor E. Brodsky and Nilam S. Mangalmurti This information is current as of September 27, 2021. J Immunol 2018; 201:1343-1351; ; doi: 10.4049/jimmunol.1800565 http://www.jimmunol.org/content/201/5/1343 Downloaded from References This article cites 102 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/201/5/1343.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity x { H. Luke Anderson,* Igor E. Brodsky,†,‡ and Nilam S. Mangalmurti‡, , The field of red cell biology is undergoing a quiet rev- mitophagy (2, 4). Loss of the erythroid nucleus is thought to have olution. Long assumed to be inert oxygen carriers, facilitated the evolution of mammalian endothermy, as it allowed RBCs are emerging as important modulators of the in- erythrocytes to further specialize for efficient gas exchange (4). nate immune response. Erythrocytes bind and scavenge In the classical literature, human erythrocytes have long been chemokines, nucleic acids, and pathogens in circulation. typecast as mere oxygen transporters. However, mounting evi- Depending on the conditions of the microenvironment, dence suggests that these cells also play an important role in the erythrocytes may either promote immune activation or innate immune system (5–7). From an evolutionary perspective, maintain immune quiescence. We examine erythrocyte the involvement of human erythrocytes in innate immunity Downloaded from immune function through a comparative and evolution- should not be surprising, as the nucleated erythrocytes of birds, ary lens, as this framework may offer perspective into amphibians, and fishes actively participate in the immune re- newly recognized roles of human RBCs. Next, we re- sponse via production of cytokine-like factors, upregulation of viral response genes, and sequestration of pathogens through view the known immune roles of human RBCs and surface binding or phagocytosis (8–20). Despite their deletion discuss their activity in the context of sepsis where of organelles during erythropoiesis and subsequent inability to http://www.jimmunol.org/ erythrocyte function may prove important to disease carry out transcription and translation, mammalian erythrocytes pathogenesis. Given the limited success of immuno- retain the ability to interact with endogenous and exogenous modulatory therapies in treating inflammatory diseases, inflammatory molecules in the blood. Research over the past we propose that the immunologic function of RBCs several decades demonstrates that, like their evolutionary provides an understudied and potentially rich area of counterparts, these cells retain the ability to bind and interact research that may yield novel insights into mechanisms with a variety of inflammatory molecules, including chemo- of immune regulation. The Journal of Immunology, kines, nucleic acids, and pathogens, thereby regulating and 2018, 201: 1343–1351. modulating immune responses. Internal components of eryth- by guest on September 27, 2021 rocytes such as hemoglobin and heme are also formidable facets of innate immunity, capable of generating antimicrobial reactive rythrocytes are the most abundant cell type in the oxygen species (ROS) to defend against invading hemolytic human body, numbering between 20 and 30 trillion microbes as well as promoting pathologic inflammatory and and accounting for nearly 70% of the total cell count in E autoimmune responses. Finally, the involvement of erythrocytes the average adult (1). Erythropoiesis begins with the differenti- in host–pathogen interactions may render them crucially im- ation of multipotent hematopoietic stem cells in the bone portant in the context of sepsis and septic shock, a state of marrow, which then give rise to erythroid-committed precursors. dysregulated host response to infection where the body is In the final stages of the process, known as terminal erythro- overwhelmed with endotoxins and other inflammatory media- poiesis, the nucleus and other organelles are extruded. These tors. A deeper understanding of erythrocyte function will likely enucleated reticulocytes are then released into the bloodstream to be vital to elucidating the ways in which these cells contribute to complete their maturation process (2). After a lifespan of ∼120 d, the pathogenesis of a variety of acute and chronic diseases. RBCs are cleared by macrophages in the spleen and liver (3). Importantly, mammals are the only vertebrates whose eryth- rocytes are enucleated in their mature state. The extrusion of Evolutionary perspectives the nucleus and other organelles occurs through a series of Erythrocyte origins. Throughout the course of evolution, the complex stages, including chromatin condensation, budding, and cellular components of the blood have undergone functional *Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; Health Affairs through the Peer Reviewed Medical Research Program under Contract †Department of Pathobiology, University of Pennsylvania School of Veterinary Medi- W81XWH-15-1-0363 (to N.S.M.). cine, Philadelphia, PA 19104; ‡Institute for Immunology, Perelman School of Medicine, x Address correspondence and reprint requests to Dr. Nilam S. Mangalmurti, Perelman University of Pennsylvania, Philadelphia, PA 19104; Pulmonary, Allergy and Critical School of Medicine, University of Pennsylvania, 220 Stemmler Hall, 3450 Hamilton Care Division, Department of Medicine, Perelman School of Medicine, University of { Walk, Philadelphia, PA 19104. E-mail address: [email protected] Pennsylvania, Philadelphia, PA 19104; and Penn Center for Pulmonary Biology, Perel- man School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Abbreviations used in this article: DAMP, damage-associated molecular pattern; DARC, Duffy Ag receptor for chemokines; GYPA, glycophorin A; HO-1, heme oxygenase-1; ORCIDs: 0000-0002-4150-0517 (H.L.A.); 0000-0001-7970-872X (I.E.B.); 0000- mtDNA, mitochondrial DNA; NRBC, nucleated RBC; ROS, reactive oxygen species. 0002-9146-1608 (N.S.M.). Received for publication April 20, 2018. Accepted for publication May 16, 2018. Copyright Ó 2018 by The American Association of Immunologists, Inc. 0022-1767/18/$35.00 This work was supported by National Institutes of Health Award HL126788 (to N.S.M.). This work was also supported by the Office of the Assistant Secretary of Defense for www.jimmunol.org/cgi/doi/10.4049/jimmunol.1800565 1344 BRIEF REVIEWS: IMMUNOMODULATORY EFFECTS OF RBCs specialization. The earliest blood cells are thought to have been behavior was co-opted by the malarial parasite or that it is relative generalists involved in both phagocytosis and nutrient the maladaptive consequence of an evolutionarily conserved delivery. However, they did not serve a function in oxygen mechanism of pathogen sequestration. transport (21, 22). Prior to the emergence of circulatory systems, Mammalian erythrocytes. Mammals are the only vertebrates with small invertebrates accomplished tissue oxygenation by simple enucleated erythrocytes under homeostatic conditions (Fig. 1). diffusion alone; this mechanism is still observed today in prim- Intriguingly, however, nucleated erythrocytes are sometimes itive animals such as the sponges, cnidarians, and flatworms (21, observed in humans during pathologic states, constituting a 23). Later, the emergence of larger body plans necessitated more striking exception and suggesting that enucleated erythrocytes efficient oxygen delivery mechanisms, leading to the evolution of are not an obligate feature of mammalian physiology (32–34). increasingly elaborate circulatory systems (23) and a variety of Mammalian erythrocytes also lack endoplasmic reticula, ribo- oxygen-carrying respiratory pigments (24, 25). Hemoglobin somes, and mitochondria, as early developmental processes appears to have arisen first among them, followed by the expunge these typically vital organelles (2). It has been hypoth- hemerythrins, the molluscan hemocyanins, and eventually the esized that the deletion of nuclei and organelles in mature arthropod hemocyanins (25). Although hemoglobin likely erythrocytes may have allowed for increased surface area– began as a free-floating protein, the emergence of cells to to-volume ratio, facilitating increased gas exchange efficiency encapsulate the pigment (i.e., erythrocytes) appears to have (35–37). Moreover, the feature allowed for elevated cellular occurred soon after (24, 25). All modern vertebrates [with the hemoglobin capacity (4), increased pliability, and an improved
Recommended publications
  • IFM Innate Immunity Infographic
    UNDERSTANDING INNATE IMMUNITY INTRODUCTION The immune system is comprised of two arms that work together to protect the body – the innate and adaptive immune systems. INNATE ADAPTIVE γδ T Cell Dendritic B Cell Cell Macrophage Antibodies Natural Killer Lymphocites Neutrophil T Cell CD4+ CD8+ T Cell T Cell TIME 6 hours 12 hours 1 week INNATE IMMUNITY ADAPTIVE IMMUNITY Innate immunity is the body’s first The adaptive, or acquired, immune line of immunological response system is activated when the innate and reacts quickly to anything that immune system is not able to fully should not be present. address a threat, but responses are slow, taking up to a week to fully respond. Pathogen evades the innate Dendritic immune system T Cell Cell Through antigen Pathogen presentation, the dendritic cell informs T cells of the pathogen, which informs Macrophage B cells B Cell B cells create antibodies against the pathogen Macrophages engulf and destroy Antibodies label invading pathogens pathogens for destruction Scientists estimate innate immunity comprises approximately: The adaptive immune system develops of the immune memory of pathogen exposures, so that 80% system B and T cells can respond quickly to eliminate repeat invaders. IMMUNE SYSTEM AND DISEASE If the immune system consistently under-responds or over-responds, serious diseases can result. CANCER INFLAMMATION Innate system is TOO ACTIVE Innate system NOT ACTIVE ENOUGH Cancers grow and spread when tumor Certain diseases trigger the innate cells evade detection by the immune immune system to unnecessarily system. The innate immune system is respond and cause excessive inflammation. responsible for detecting cancer cells and This type of chronic inflammation is signaling to the adaptive immune system associated with autoimmune and for the destruction of the cancer cells.
    [Show full text]
  • TLR3-Dependent Activation of TLR2 Endogenous Ligands Via the Myd88 Signaling Pathway Augments the Innate Immune Response
    cells Article TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response 1 2, 1 3 Hellen S. Teixeira , Jiawei Zhao y, Ethan Kazmierski , Denis F. Kinane and Manjunatha R. Benakanakere 2,* 1 Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] (H.S.T.); [email protected] (E.K.) 2 Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] 3 Periodontology Department, Bern Dental School, University of Bern, 3012 Bern, Switzerland; [email protected] * Correspondence: [email protected] Present address: Department of Pathology, Wayne State University School of Medicine, y 541 East Canfield Ave., Scott Hall 9215, Detroit, MI 48201, USA. Received: 30 June 2020; Accepted: 12 August 2020; Published: 17 August 2020 Abstract: The role of the adaptor molecule MyD88 is thought to be independent of Toll-like receptor 3 (TLR3) signaling. In this report, we demonstrate a previously unknown role of MyD88 in TLR3 signaling in inducing endogenous ligands of TLR2 to elicit innate immune responses. Of the various TLR ligands examined, the TLR3-specific ligand polyinosinic:polycytidylic acid (poly I:C), significantly induced TNF production and the upregulation of other TLR transcripts, in particular, TLR2. Accordingly, TLR3 stimulation also led to a significant upregulation of endogenous TLR2 ligands mainly, HMGB1 and Hsp60. By contrast, the silencing of TLR3 significantly downregulated MyD88 and TLR2 gene expression and pro-inflammatory IL1β, TNF, and IL8 secretion. The silencing of MyD88 similarly led to the downregulation of TLR2, IL1β, TNF and IL8, thus suggesting MyD88 / to somehow act downstream of TLR3.
    [Show full text]
  • TLR4 and TLR9 Ligands Macrophages Induces Cross
    Lymphotoxin β Receptor Activation on Macrophages Induces Cross-Tolerance to TLR4 and TLR9 Ligands This information is current as Nadin Wimmer, Barbara Huber, Nicola Barabas, Johann of September 27, 2021. Röhrl, Klaus Pfeffer and Thomas Hehlgans J Immunol 2012; 188:3426-3433; Prepublished online 22 February 2012; doi: 10.4049/jimmunol.1103324 http://www.jimmunol.org/content/188/7/3426 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/02/23/jimmunol.110332 Material 4.DC1 http://www.jimmunol.org/ References This article cites 42 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/188/7/3426.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Lymphotoxin b Receptor Activation on Macrophages Induces Cross-Tolerance to TLR4 and TLR9 Ligands Nadin Wimmer,* Barbara Huber,* Nicola Barabas,* Johann Ro¨hrl,* Klaus Pfeffer,† and Thomas Hehlgans* Our previous studies indicated that lymphotoxin b receptor (LTbR) activation controls and downregulates inflammatory reac- tions.
    [Show full text]
  • Comparative Proteomic Analysis of Erythropoiesis Tissue Head Kidney Among Three Antarctic Fish Species
    Comparative Proteomic Analysis of Erythropoiesis Tissue Head Kidney Among three Antarctic Fish Species Ruonan Jia Shanghai Ocean University Shaojun Huang Shanghai Ocean University Wanying Zhai Shanghai Ocean University Shouwen Jiang Shanghai Ocean University Wenhao Li Shanghai Ocean University Faxiang Wang Shanghai Ocean University Qianghua Xu ( [email protected] ) Shanghai Ocean University https://orcid.org/0000-0003-0351-1765 Research Article Keywords: Antarctic icesh, erythropoiesis, hematopoiesis, head kidney, immunity Posted Date: June 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-504121/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Antarctic icesh is the only known vertebrate species that lacks oxygen-carrying hemoglobin and functional erythrocytes. To reveal the unique hematopoietic process of icesh, we used an integrated approach including tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify the dynamic changes in the head kidney whole proteome of a white-blooded icesh, Chionodraco hamatus, compared to those in two other red-blooded Antarctic sh, Trematomus bernacchii and Notothenia coriiceps. Of the 4,672 identied proteins, in the Antarctic ice sh head kidney, 123 proteins were signicantly up-regulated and 95 proteins were down-regulated. The functional grouping of differentially expressed proteins based on KEGG pathway analysis shows that white blood sh and red blood sh have signicant differences in erythropoiesis, heme biogenesis, leucocyte and platelet cell development. The proteins involved in the hematopoietic process in icesh showed a clear trend of downregulation of erythroid lineage marker proteins and upregulation of lymphoid and megakaryocytic lineage marker proteins, including CD9, ITGB2, and MTOR, which suggests a shift in hematopoiesis in the icesh head kidney due to the loss of erythrocytes.
    [Show full text]
  • Age-Length Composition of Mackerel Icefish (Champsocephalus Gunnari, Perciformes, Notothenioidei, Channichthyidae) from Different Parts of the South Georgia Shelf
    CCAMLR Scieilce, Vol. 8 (2001): 133-146 AGE-LENGTH COMPOSITION OF MACKEREL ICEFISH (CHAMPSOCEPHALUS GUNNARI, PERCIFORMES, NOTOTHENIOIDEI, CHANNICHTHYIDAE) FROM DIFFERENT PARTS OF THE SOUTH GEORGIA SHELF G.A. Frolkina AtlantNIRO 5 Dmitry Donskoy Street Kaliningrad 236000, Russia Email - atlantQbaltnet.ru Abstract Biostatistical data obtained by Soviet research and commercial vessels from 1970 to 1991 have been used to determine tlne age-length composition of mackerel icefish (Chnnzpsoceplzalus g~~izllnrl)from different parts of the South Georgia area. An analysis of the spatial distribution of C. giirzrznri size and age groups over the eastern, northern, western and soutlnern parts of tlne shelf, and near Shag Rocks, revealed a similar age-leingtl~composition for young fish inhabiting areas to the west of the island and near Shag Rocks. Differences were observed between those t~7ogroups and the easterin group. The larger number of mature fish in the west is related to the migration of maturing individuals from the eastern and western parts of the area. It is implied that part of tlne western group migrates towards Shag Rocks at the age of 2-3 years. It has been found that, by number, recruits represent the largest part of tlne population, whether a fishery is operating or not. As a result of this, as well as the species' ability to live not only in off- bottom, but also in pelagic waters, an earlier age of sexual maturity compared to other nototheniids, and favourable oceanographic conditions, the C. g~lrliznrl stock could potentially recover quickly from declines in stock size and inay become abundant in the area, as has bee11 demonstrated on several occasions in the 1970s and 1980s.
    [Show full text]
  • Ancient Climate Change, Antifreeze, and the Evolutionary Diversification
    Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes Thomas J. Neara,b,1, Alex Dornburgb, Kristen L. Kuhnb, Joseph T. Eastmanc, Jillian N. Penningtonb,d, Tomaso Patarnelloe, Lorenzo Zanef, Daniel A. Fernándezg, and Christopher D. Jonesh aPeabody Museum of Natural History and bDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 cDepartment of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701; dEzra Stiles College, Yale University, New Haven, CT 06520 eDepartment of Public Health, Comparative Pathology and Veterinary Hygiene, Università di Padova, 35020 Legnaro, Italy; fDepartment of Biology, Università di Padova, 35131 Padua, Italy; gCentro Austral de Investigaciones Científicas, 9410 Ushuaia, Argentina; and hAntarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration National Marine Fisheries Service, La Jolla, CA 92037 Edited by David M. Hillis, University of Texas, Austin, TX, and approved January 25, 2012 (received for review September 15, 2011) The Southern Ocean around Antarctica is among the most rapidly they are more species-rich than their non-Antarctic sister line- warming regions on Earth, but has experienced episodic climate age (approximately 100 vs. one species) (9). Molecular di- change during the past 40 million years. It remains unclear how vergence time analyses have attempted to correlate the origin of ancient periods of climate change have shaped Antarctic bio- the AFGP-bearing Antarctic notothenioids with a period of diversity. The origin of antifreeze glycoproteins (AFGPs) in Ant- global cooling and widespread glaciation of Antarctica that be- arctic notothenioid fishes has become a classic example of how the gan at the onset of the Eocene–Oligocene boundary (14, 15), evolution of a key innovation in response to climate change can approximately 35 Ma (16, 17), leading to the conclusion that the drive adaptive radiation.
    [Show full text]
  • TLR4 Signaling and Macrophage Inflammatory Responses Are Dampened by GIV/Girdin
    TLR4 signaling and macrophage inflammatory responses are dampened by GIV/Girdin Lee Swansona, Gajanan D. Katkara, Julian Tama, Rama F. Pranadinataa, Yogitha Chareddya, Jane Coatesa, Mahitha Shree Anandachara, Vanessa Castilloa, Joshua Olsonb, Victor Nizetb,c, Irina Kufarevac, Soumita Dasd, and Pradipta Ghosha,e,1 aDepartment of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093; bDepartment of Pediatrics, University of California San Diego, La Jolla, CA 92093; cSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093; dDepartment of Pathology, University of California San Diego, La Jolla, CA 92093; and eDepartment of Medicine, University of California San Diego, La Jolla, CA 92093 Edited by Shizuo Akira, Osaka University, Osaka, Japan, and approved September 18, 2020 (received for review June 10, 2020) Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflam- and integrins (reviewed in refs. 5, 6), here we studied if and how matory response; controlled responses confer immunity but uncon- GIV may impact the LPS/TLR4 signaling in the most relevant trolled responses cause harm. Here we define how a multimodular cell line, i.e., macrophages. We dissect the relevance of those scaffold, GIV (a.k.a. Girdin), titrates such inflammatory response in findings in murine disease models and its broader relevance macrophages. Upon challenge with either live microbes or microbe- among other TLRs. derived lipopolysaccharides (a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and Results and Discussion suppress proinflammatory cytokines and signaling pathways GIV Is Preferentially Expressed in the Myeloid Cells of Our Immune (i.e., NFkB and CREB) downstream of TLR4 compared to their System.
    [Show full text]
  • Fall Feeding Aggregations of Fin Whales Off Elephant Island (Antarctica)
    SC/64/SH9 Fall feeding aggregations of fin whales off Elephant Island (Antarctica) BURKHARDT, ELKE* AND LANFREDI, CATERINA ** * Alfred Wegener Institute for Polar and Marine research, Am Alten Hafen 26, 256678 Bremerhaven, Germany ** Politecnico di Milano, University of Technology, DIIAR Environmental Engineering Division Pza Leonardo da Vinci 32, 20133 Milano, Italy Abstract From 13 March to 09 April 2012 Germany conducted a fisheries survey on board RV Polarstern in the Scotia Sea (Elephant Island - South Shetland Island - Joinville Island area) under the auspices of CCAMLR. During this expedition, ANT-XXVIII/4, an opportunistic marine mammal survey was carried out. Data were collected for 26 days along the externally preset cruise track, resulting in 295 hrs on effort. Within the study area 248 sightings were collected, including three different species of baleen whales, fin whale (Balaenoptera physalus), humpback whale ( Megaptera novaeangliae ), and Antarctic minke whale (Balaenoptera bonaerensis ) and one toothed whale species, killer whale ( Orcinus orca ). More than 62% of the sightings recorded were fin whales (155 sightings) which were mainly related to the Elephant Island area (116 sightings). Usual group sizes of the total fin whale sightings ranged from one to five individuals, also including young animals associated with adults during some encounters. Larger groups of more than 20 whales, and on two occasions more than 100 individuals, were observed as well. These large pods of fin whales were observed feeding in shallow waters (< 300 m) on the north-western shelf off Elephant Island, concordant with large aggregations of Antarctic krill ( Euphausia superba ). This observation suggests that Elephant Island constitutes an important feeding area for fin whales in early austral fall, with possible implications regarding the regulation of (krill) fisheries in this area.
    [Show full text]
  • Fcγriib Attenuates TLR4‑Mediated NF‑Κb Signaling in B Cells
    MOLECULAR MEDICINE REPORTS 16: 5693-5698, 2017 FcγRIIb attenuates TLR4‑mediated NF‑κB signaling in B cells LI QIAN1-3, WENYAN CHEN1, SHAOQING WANG1, YANG LIU1, XIAOQIN JIA1, YI FU1, WEIJUAN GONG1 and FANG TIAN1 1Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001; 2Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009; 3Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China Received September 26, 2016; Accepted June 28, 2017 DOI: 10.3892/mmr.2017.7269 Abstract. Toll-like receptors (TLRs) serve a vital role in (TLRs) are triggered to induce pro‑inflammatory cytokines activating the innate immune system by sensing conserved production, thus serving important roles in the initiation of microbial products. Fc γ receptor IIb (FcγRIIb), the inhibitory innate immunity (1). The TLR intracellular signaling pathway Fc receptor, exerts its immune regulatory functions by binding has been studied intensively. Binding of TLR4 agonist, to the immunoglobulin G Fc domain. Although the individual LPS, to TLR4 activates myeloid differentiation protein 88 roles of TLRs and FcγRIIb have been studied intensively, the (MyD88)-dependent signaling, leading to the activation cross-talk between FcγRIIb and TLR4 on B cells remains of mitogen-activated protein kinase (MAPK) and nuclear unknown. The present study demonstrated that FcγRIIb ligation factor (NF)-κΒ pathways, and contributing to the release of by the immune complex (IC) attenuated the TLR4-triggered pro‑inflammatory cytokines (2,3). Increased production of nuclear factor (NF)-κΒ activation, and decreased the release pro‑inflammatory cytokines causes damage to the host and of interleukin (IL)-6 from B cells, via enhancing LYN induces pathological inflammation.
    [Show full text]
  • TLR Signaling Pathways
    Seminars in Immunology 16 (2004) 3–9 TLR signaling pathways Kiyoshi Takeda, Shizuo Akira∗ Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and ERATO, Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Abstract Toll-like receptors (TLRs) have been established to play an essential role in the activation of innate immunity by recognizing spe- cific patterns of microbial components. TLR signaling pathways arise from intracytoplasmic TIR domains, which are conserved among all TLRs. Recent accumulating evidence has demonstrated that TIR domain-containing adaptors, such as MyD88, TIRAP, and TRIF, modulate TLR signaling pathways. MyD88 is essential for the induction of inflammatory cytokines triggered by all TLRs. TIRAP is specifically involved in the MyD88-dependent pathway via TLR2 and TLR4, whereas TRIF is implicated in the TLR3- and TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors provide specificity of TLR signaling. © 2003 Elsevier Ltd. All rights reserved. Keywords: TLR; Innate immunity; Signal transduction; TIR domain 1. Introduction 2. Toll-like receptors Toll receptor was originally identified in Drosophila as an A mammalian homologue of Drosophila Toll receptor essential receptor for the establishment of the dorso-ventral (now termed TLR4) was shown to induce the expression pattern in developing embryos [1]. In 1996, Hoffmann and of genes involved in inflammatory responses [3]. In addi- colleagues demonstrated that Toll-mutant flies were highly tion, a mutation in the Tlr4 gene was identified in mouse susceptible to fungal infection [2]. This study made us strains that were hyporesponsive to lipopolysaccharide [4]. aware that the immune system, particularly the innate im- Since then, Toll receptors in mammals have been a major mune system, has a skilful means of detecting invasion by focus in the immunology field.
    [Show full text]
  • Vascular Morphometry of the Retina in Antarctic Fishes Is Dependent Upon the Level of Hemoglobin in Circulation Jody M
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 2006 Vascular Morphometry of the Retina in Antarctic Fishes is Dependent upon the Level of Hemoglobin in Circulation Jody M. Wujcik Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Oceanography Commons Recommended Citation Wujcik, Jody M., "Vascular Morphometry of the Retina in Antarctic Fishes is Dependent upon the Level of Hemoglobin in Circulation" (2006). Electronic Theses and Dissertations. 135. http://digitalcommons.library.umaine.edu/etd/135 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. VASCULAR MORPHOMETRY OF THE RETINA IN ANTARCTIC FISHES IS DEPENDENT UPON THE LEVEL OF HEMOGLOBIN IN CIRCULATION BY Jody M. Wujcik B.S. East Stroudsburg University, 2004 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) The Graduate School The University of Maine August, 2006 Advisory Committee: Bruce D. Sidell, Professor of Marine Sciences, Advisor Harold B. Dowse, Professor of Biological Sciences Seth Tyler, Professor of Zoology and Cooperating Professor of Marine Sciences VASCULAR MORPHOMETRY OF THE RETINA IN ANTARCTIC FISHES IS DEPENDENT UPON THE LEVEL OF HEMOGLOBIN IN CIRCULATION By Jody M. Wujcik Thesis Advisor: Dr. Bruce D. Side11 An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) August, 2006 Antarctic notothenioids express the circulating oxygen-binding protein hemoglobin (Hb) over a broad range of blood concentrations.
    [Show full text]
  • TLR4 Signalling
    RESEA r CH HIGHLIGHTS INNATE IMMUNITY TLR4 signalling Toll-like receptor 4 (TLR4) is unique plasma membrane. Now, a study from sufficient to allow TRAM to localize among TLRs in its ability to activate Ruslan Medzhitov’s laboratory shows specifically to endosomes. These 20 two distinct signalling pathways that the two signalling pathways amino acids constitute a bipartite — one pathway is activated by the are induced sequentially and that localization domain — consisting of adaptors TIRAP (Toll/interleukin-1- the TRAM–TRIF pathway is only a myristoylation motif (the first 7 receptor (TIR)-domain-containing operational from early endosomes amino acids) and a polybasic domain adaptor protein) and MyD88, following endocytosis of TLR4. — that is commonly found in other which leads to the induction of The authors found it puzzling proteins that shuttle between the pro‑inflammatory cytokines, and that TLR4 is the only known TLR plasma membrane and endosomes. the second pathway is activated by capable of inducing the production Mutational analysis showed that the the adaptors TRIF (TIR-domain- of type I interferons from the plasma myristoylation motif is necessary containing adaptor protein inducing membrane so they decided to take for endosomal localization but interferon‑β) and TRAM (TRIF- a closer look at TLR4 signalling. both parts of the bipartite motif related adaptor molecule), which First, they assessed the subcellular are required for plasma-membrane leads to the induction of type I inter- localization of tagged TLR4 and found targeting. A TRAM transgene of ferons. Until now, it had been believed that it localized to both the plasma which the protein product resided that these two signalling pathways membrane and endosomal vesicles.
    [Show full text]