Variability of Southern Hemisphere Cyclone and Anticyclone Behavior: Further Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Air Masses and Fronts
CHAPTER 4 AIR MASSES AND FRONTS Temperature, in the form of heating and cooling, contrasts and produces a homogeneous mass of air. The plays a key roll in our atmosphere’s circulation. energy supplied to Earth’s surface from the Sun is Heating and cooling is also the key in the formation of distributed to the air mass by convection, radiation, and various air masses. These air masses, because of conduction. temperature contrast, ultimately result in the formation Another condition necessary for air mass formation of frontal systems. The air masses and frontal systems, is equilibrium between ground and air. This is however, could not move significantly without the established by a combination of the following interplay of low-pressure systems (cyclones). processes: (1) turbulent-convective transport of heat Some regions of Earth have weak pressure upward into the higher levels of the air; (2) cooling of gradients at times that allow for little air movement. air by radiation loss of heat; and (3) transport of heat by Therefore, the air lying over these regions eventually evaporation and condensation processes. takes on the certain characteristics of temperature and The fastest and most effective process involved in moisture normal to that region. Ultimately, air masses establishing equilibrium is the turbulent-convective with these specific characteristics (warm, cold, moist, transport of heat upwards. The slowest and least or dry) develop. Because of the existence of cyclones effective process is radiation. and other factors aloft, these air masses are eventually subject to some movement that forces them together. During radiation and turbulent-convective When these air masses are forced together, fronts processes, evaporation and condensation contribute in develop between them. -
The Life Cycle of Upper-Level Troughs and Ridges: a Novel Detection Method, Climatologies and Lagrangian Characteristics
Weather Clim. Dynam., 1, 459–479, 2020 https://doi.org/10.5194/wcd-1-459-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. The life cycle of upper-level troughs and ridges: a novel detection method, climatologies and Lagrangian characteristics Sebastian Schemm, Stefan Rüdisühli, and Michael Sprenger Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland Correspondence: Sebastian Schemm ([email protected]) Received: 12 March 2020 – Discussion started: 3 April 2020 Revised: 4 August 2020 – Accepted: 26 August 2020 – Published: 10 September 2020 Abstract. A novel method is introduced to identify and track diagnostics such as E vectors. During La Niña, the situa- the life cycle of upper-level troughs and ridges. The aim is tion is essentially reversed. The orientation of troughs and to close the existing gap between methods that detect the ridges also depends on the jet position. For example, dur- initiation phase of upper-level Rossby wave development ing midwinter over the Pacific, when the subtropical jet is and methods that detect Rossby wave breaking and decay- strongest and located farthest equatorward, cyclonically ori- ing waves. The presented method quantifies the horizontal ented troughs and ridges dominate the climatology. Finally, trough and ridge orientation and identifies the correspond- the identified troughs and ridges are used as starting points ing trough and ridge axes. These allow us to study the dy- for 24 h backward parcel trajectories, and a discussion of the namics of pre- and post-trough–ridge regions separately. The distribution of pressure, potential temperature and potential method is based on the curvature of the geopotential height vorticity changes along the trajectories is provided to give in- at a given isobaric surface and is computationally efficient. -
Extreme Climatic Characteristics Near the Coastline of the Southeast Region of Brazil in the Last 40 Years
Extreme Climatic Characteristics Near the Coastline of the Southeast Region of Brazil in the Last 40 Years Marilia Mitidieri Fernandes de Oliveira ( [email protected] ) Federal University of Rio de Janeiro: Universidade Federal do Rio de Janeiro Jorge Luiz Fernandes de Oliveira Fluminense Federal University Pedro José Farias Fernandes Fluminense Federal University, Physical Geography Laboratory (LAGEF), Eric Gilleland National, Center for Atmospheric Research (NCAR) Nelson Francisco Favilla Ebecken Federal University of Rio de Janeiro: Universidade Federal do Rio de Janeiro Research Article Keywords: ERA5 Reanalysis data, Non-parametric statistical tests, severe weather systems, subtropical cyclones Posted Date: June 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-159473/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Extreme climatic characteristics near the coastline of the Southeast region of Brazil in the last 40 years Marilia Mitidieri Fernandes de Oliveira1, Jorge Luiz Fernandes de Oliveira2, Pedro José Farias Fernandes3, Eric Gilleland4, Nelson Francisco Favilla Ebecken1 1Federal University of Rio de Janeiro, Civil Engineering Postgraduate Program-COPPE/UFRJ, Center of Technology, Rio de Janeiro 21945-970, Brazil 2Fluminense Federal University, Geography Postgraduate Program, Department of Geography, Geoscience Institute, Niterói 24210-340, Brazil 3Fluminense Federal University, Physical Geography Laboratory (LAGEF), Department of Geography, Niterói 24210-340, -
NOTES and CORRESPONDENCE Synoptic-Scale Controls of Summer
15 FEBRUARY 2006 NOTES AND CORRESPONDENCE 613 NOTES AND CORRESPONDENCE Synoptic-Scale Controls of Summer Precipitation in the Southeastern United States JEREMY E. DIEM Department of Anthropology and Geography, Georgia State University, Atlanta, Georgia (Manuscript received 15 October 2004, in final form 11 August 2005) ABSTRACT Past climatological research has not quantitatively defined the synoptic-scale circulation deviations re- sponsible for anomalous summer-season precipitation totals in the southeastern United States. Therefore, the objectives of this research were to determine the synoptic-scale controls of wet and dry multiday periods during the summer within a portion of the southeastern United States as well as to assess the linkages between synoptic-scale circulation and multidecadal variations in precipitation characteristics for the study domain. Daily precipitation data from 30 stations for June, July, and August from 1953 to 2002 were converted into 13-day totals. Using standardized principal components analysis (PCA), the study domain was divided into three precipitation regions (i.e., South, Northwest, and Northeast). Wet and dry periods for each region were composed of the top 56 and bottom 56 thirteen-day periods. Composite circulation maps for 500 and 850 mb revealed the following: wet periods were generally associated with an upper-level trough over the interior southeastern United States coincident with strong lower-tropospheric flow into the South- east from the Gulf of Mexico, and dry periods were characterized by ridges or anticyclones over the midwestern and southeastern United States coupled with weak lower-tropospheric flow. Many of the wet periods had surface fronts. Over the 50-yr period, increased precipitation was significantly correlated with increased occurrences of midtropospheric troughs over the study domain. -
1 Climatology of South American Seasonal Changes
Vol. 27 N° 1 y 2 (2002) 1-30 PROGRESS IN PAN AMERICAN CLIVAR RESEARCH: UNDERSTANDING THE SOUTH AMERICAN MONSOON Julia Nogués-Paegle 1 (1), Carlos R. Mechoso (2), Rong Fu (3), E. Hugo Berbery (4), Winston C. Chao (5), Tsing-Chang Chen (6), Kerry Cook (7), Alvaro F. Diaz (8), David Enfield (9), Rosana Ferreira (4), Alice M. Grimm (10), Vernon Kousky (11), Brant Liebmann (12), José Marengo (13), Kingste Mo (11), J. David Neelin (2), Jan Paegle (1), Andrew W. Robertson (14), Anji Seth (14), Carolina S. Vera (15), and Jiayu Zhou (16) (1) Department of Meteorology, University of Utah, USA, (2) Department of Atmospheric Sciences, University of California, Los Angeles, USA, (3) Georgia Institute of Technology; Earth & Atmospheric Sciences, USA (4) Department of Meteorology, University of Maryland, USA, (5) Laboratory for Atmospheres, NASA/Goddard Space Flight Center, USA, (6) Department of Geological and Atmospheric Sciences, Iowa State University, USA, (7) Department of Earth and Atmospheric Sciences, Cornell University, USA, (8) Instituto de Mecánica de Fluidos e Ingeniería Ambiental, Universidad de la República, Uruguay, (9) NOAA Atlantic Oceanographic Laboratory, USA, (10) Department of Physics, Federal University of Paraná, Brazil, (11) Climate Prediction Center/NCEP/NWS/NOAA, USA, (12) NOAA-CIRES Climate Diagnostics Center, USA, (13) Centro de Previsao do Tempo e Estudos de Clima, CPTEC, Brazil, (14) International Research Institute for Climate Prediction, Lamont Doherty Earth Observatory of Columbia University, USA, (15) CIMA/Departmento de Ciencias de la Atmósfera, University of Buenos Aires, Argentina, (16) Goddard Earth Sciences Technology Center, University of Maryland, USA. (Manuscript received 13 May 2002, in final form 20 January 2003) ABSTRACT A review of recent findings on the South American Monsoon System (SAMS) is presented. -
El Niño and Health
World Health Organization Sustainable Development and Healthy Environments WHO/SDE/PHE/99.4 English only Dist. Limited El Niño and Health Protection of the Human Environment Task Force on Climate and Health Geneva 1999 EL NINO AND HEALTH PAGE i El Niño and Health R Sari Kovats Department of Epidemiology and Population Health London School of Hygiene and Tropical Medicine, United Kingdom Menno J Bouma Department of Infectious and Tropical Diseases London School of Hygiene and Tropical Medicine, United Kingdom Andy Haines Department of Primary Care and Population Sciences Royal Free and University College Medical School University College London United Kingdom CONTENTS ACKNOWLEDGEMENTS ................................................................................................. iii PREFACE ...........................................................................................................iv EXECUTIVE SUMMARY .....................................................................................................v 1. EL NIÑO SOUTHERN OSCILLATION......................................................................1 1.1 What is the El Niño Southern Oscillation? ...........................................................1 1.1.1 ENSO parameters................................................................................1 1.1.2 Frequency of El Niño............................................................................4 1.1.3 The El Niño of 1997/98 ........................................................................6 1.2 Long-term -
Synoptic-Scale Controls of Fog and Low Clouds in the Namib Desert: Response to Reviewer 1
Synoptic-scale controls of fog and low clouds in the Namib Desert: Response to Reviewer 1 Hendrik Andersen, Jan Cermak, Julia Fuchs, Peter Knippertz, Marco Gaetani, Julian Quinting, Sebastian Sippel, and Roland Vogt contact: [email protected] We would like to thank reviewer 1 for her/his careful review of the manuscript and her/his constructive criticism and valuable comments. Comments by the referee are colored in black, our replies or comments are colored in blue and italics. Using a 14-year period of reanalysis grids and backward trajectories, this study examines the impact of large-scale dynamics and thermodynamics on fog and low clouds (FLCs) over Namib. Specifically, the authors’ focus on two seasons when different FLC types are observed due to different synoptic-scale regimes. A main finding is that the mean sea level pressure (MSLP) field differs notably between clear and FLC days. To this end, the authors’ use a statistical model and MSLP fields to provide skillful prediction of FLCs up to one day in advance. A new conceptual model of the two different FLC regimes is developed to summarize findings and aid in future studies related to FLCs over Namib. In general, the scientific purpose is justified, the findings are important, and the paper is well-written; however, I do have concerns about some of the methods used. Overall, I think that the results are interesting and worthy of publication, and at this stage I suggest acceptance subject to major revisions. Major/general comments: 1. Use of MSLP, 2 m temperature, and 10 m winds to characterize synoptic-scale conditions This study relies on the assumption that near-surface (boundary layer) meteorological variables – specifically MSLP, 2 m temperature, and 10 m horizontal wind components – are representative of the large-scale dynamics. -
Tropical Upper Tropospheric Potential Vorticity Intrusions
Generated using version 3.2 of the official AMS LATEX template 1 Tropical Upper Tropospheric Potential Vorticity Intrusions 2 During Sudden Stratospheric Warmings ∗ 3 John R. Albers, Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder 4 Physical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado 5 George N. Kiladis Physical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado 6 Thomas Birner Department of Atmospheric Science Colorado State University, Fort Collins, Colorado 7 Juliana Dias Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder Physical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado ∗Corresponding author address: John R. Albers, CIRES, University of Colorado 216 UCB, Boulder, CO 80309. E-mail: [email protected] 1 8 ABSTRACT 9 We examine the intrusion of lower stratospheric extratropical potential vorticity into the 10 tropical upper troposphere in the weeks surrounding the occurrence of sudden stratospheric 11 warmings (SSWs). Our analysis reveals that SSW-related PV intrusions are significantly 12 stronger, penetrate more deeply into the tropics, and exhibit distinct geographic distributions 13 compared to their climatological counterparts. 14 While climatological upper tropospheric and lower stratospheric (UTLS) PV intrusions 15 are generally attributed to synoptic scale Rossby wave breaking, we find that SSW-related 16 PV intrusions are governed by planetary scale wave disturbances that deform the extra- 17 tropical meridional PV gradient maximum equatorward. As these deformations unfold, 18 planetary-scale wave breaking along the edge of the polar vortex extends deeply into the 19 subtropical and tropical UTLS. In addition, the material PV deformations also reorganize 20 the geographic structure of the UTLS waveguide, which alters where synoptic scale waves 21 break. -
Weather, Current and Routing Brief the Clipper 11/12 Round the World
Weather, Current and Routing Brief The Clipper 11/12 Round the World Race Prepared for the Race Skippers by Simon Rowell 27th April 2011 1. Leg One - Europe to Rio de Janeiro (early August to mid September) 4 1.1. The Route 4 1.2. The Weather 6 1.2.1. The Iberian Peninsula to the Canaries 6 1.2.2. The Canaries 10 1.2.3. The Canaries to the ITCZ, via the Cape Verdes 11 1.2.4. The ITCZ in the Atlantic 13 1.2.5. The ITCZ to Cabo Frio 16 1.3. Currents 18 1.3.1. The Iberian Peninsula to the Equator 18 1.3.2. The Equator to Rio 20 2. Leg 2 – Rio de Janeiro to Cape Town (mid September to mid October) 22 2.1. The Route 22 2.2. The Weather 22 2.3. Currents 27 3. Leg 3 – Cape Town to Western Australia (October to November) 29 3.1. The Route 29 3.2. The Weather 30 3.2.1. Southern Indian Ocean Fronts 34 3.3. Currents 35 3.3.1 Currents around the Aghulas Bank 35 3.3.2 Currents in the Southern Indian Ocean 37 4. Leg 4 –Western Australia to Wellington to Eastern Australia (mid November to December) 4.1. The Route 38 4.2. The Weather 39 4.2.1. Cape Leeuwin to Tasmania 39 4.2.2. Tasmania to Wellington and then to Gold Coast 43 4.3. Currents 47 5. Leg 5 – Gold Coast to Singapore to Qingdao (early January to end of February) 48 5.1. -
Another Look at the Index Cycle
Tellus (1985).37,4,478486 Another look at the index cycle By JOHN M. WALLACE and HUANG-HSIUNG HSU. Departi?leilt o/ Atn7ospheric Scicwccs, AK-40. Uiiiversity of Washirigtoil, Seattle, WA 981 95, USA (Manuscript received September 21. 1984: in final form March 15, 1985) ABSTRACT Relationships between the zonal index, as defined by Rossby. the hemispheric circulation pattern. the amplitude of the zonally asymmetric or "eddy" component of the hemispheric circulation, and the amplitude of the stationary wave pattern during northern hemisphere winter are investigated using 27 years of gridded 5-day mean 500 mb height data from the US National Meteorological Center. In agreement with preliminary results reported in Rossby. the major stationary wave features appear to be displaced to the east of their climatological mean positions during periods of strong zonal flow. and cice cersa. The zonal index shows only a weak negative temporal correlation with an index designed to monitor the hemispherically averaged variance of the eddy component of the 500 mb height field. Eddy amplitude is much more strongly correlated with the amplitude of the climatological mean stationary wave pattern. Hence. the notion of an "index cycle", interpreted in terms of amplitude vacillation. does not appear to have much relevance to the northern hemisphere winter-time circulation. The situation may be different in the southern hemisphere, where the stationary waves are much weaker. 1. Introduction 1938-39 winter. During episodes of weak wester- lies within that winter, the Aleutian low was located During the early years of the long-range as far west as 160" E. -
North and South American Low-Level Jets
American Low Level jetS A Scientific Prospectus and Implementation Plan North and South American Low-Level Jets Draft, March 2001 Prepared by Julia Nogues-Paegle and Jan Paegle (University of Utah, USA) with con- tributions from Michael Douglas (NOAA/NSSL, USA), Matilde Nicolini, Carolina Vera (University of Buenos Aires, Argentina), Jose Marengo (CPTEC, Brazil), Rene Garreaud (University of Chile, Chile), James Shuttleworth (University of Arizona, USA), C. Roberto Mechoso (UCLA, USA) and E. Hugo Berbery (University of Mary- land, USA). TABLE OF CONTENTS Executive Summary 5 1. What is the ALLS program? 6 2. Why the American Jets? 9 3. Science Objectives 11 3.1 Identify LLJ events and variability 11 3.1.1. North America 11 3.1.2. South America 14 3.2 Quantify LLJ contributions to the hydrological cycle 16 3.2.1. North America 16 3.2.2. South America 17 3.3 Determine plateau effects 19 3.3.1. North America 19 3.3.2. South America 19 3.4 Develop and validate theories on LLJ generation and variability 21 3.4.1. North America 21 3.4.2. South America 22 3.4.3 Local and remote influences on ALLS in relation 23 to droughts and floods 4. Implementation Plan 26 4.1 Numerical Modelling 26 4.2 Diagnostic Studies 29 4.3 Field Component of ALLS 30 4.3.1. Region of focus for the ALLS South American Field Program 32 4.3.2. Radiosonde network 33 4.3.3. Pilot balloon observations 35 4.3.4. Wind profiler observations 35 4.3.5. -
Observational Study of Subtropical Highs
Observational Study of Subtropical Highs Richard Grotjahn Dept. of Land, Air, and Water Resources University of California, Davis, U.S.A. Organization of Talk • There are 5 subtropical highs • Question: What season (or month) is each high strongest? • Question: What are other climatological aspects of the highs? • Question: What are some simple conceptual models? • Question: What remote processes seem linked to each high, and which leads? • Simple statistical analyses: means, variation, 1-pt correlations, composites will be shown • Apology: This is NOT a comprehensive survey of observational work by others. • Note: I will NOT discuss theories except to list them and state how they provide rationales for choosing certain remote variables. A Simple Fact about the Subtropical Highs On a ZONAL MEAN, they are strongest in winter. • NH SH Do individual subtropical highs have the same seasonal max? Not necessarily! Climatology: North Pacific High • On a long term monthly mean, the central pressure is greatest in SUMMER not winter. – Summer (July) • Shape is fairly consistent from year to year • location of the max SLP varies Climatology: North Atlantic High • On a long term monthly mean, the central pressure is greatest in SUMMER not winter. – Summer (July) – Secondary max in winter due to spill over from N. African cold high • Shape quite consistent from year to year • location of max SLP largest latitude variation North Atlantic High (1979-2004) 1031 Median 1030 1029 3rd Quartile 1028 1st Quartile 1027 Mean 1026 1025 1024 1023 1022 Central PresssureCentral (hPa) 1021 1020 1019 1018 J FMAMJ J ASOND Month Climatology: South Indian Ocean High • On a long term monthly mean, the central pressure is greatest in winter.