Women in Numbers 2: Research Directions in Number Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
07 26Microsoft 2022
PRESS RELEASE August 27, 2021 Jennifer Balakrishnan Awarded the 2022 AWM-Microsoft Research Prize The 2022 AWM-Microsoft Balakrishnan’s research exhibits Research Prize in Algebra and extraordinary depth as well as Number Theory will be presented breadth. In joint work with Besser, to Jennifer Balakrishnan in Çiperiani, Dogra, Müller, Stein recognition of outstanding and others, she has worked contributions to explicit methods extensively on computing p-adic in number theory, particularly her height pairings for hyperelliptic advances in computing rational curves. Applications of this points on algebraic curves over research include the formulation, number fields. along with numerical evidence, of a p-adic analogue of the Professor Balakrishnan is celebrated Birch and internationally recognized as a leader in Swinnerton-Dyer conjecture, some new explicit computational number theory. Her doctoral examples in Iwasawa theory, and more. With dissertation presents the first general technique Ho, Kaplan, Spicer, Stein and Weigandt, for computing iterated p-adic Coleman integrals Balakrishnan has assembled the most extensive on hyperelliptic curves. In the course of her computational evidence to date on the collaboration with Minhyong Kim at Oxford, distribution of ranks and Selmer groups of Balakrishnan helped realize the substantial elliptic curves over the rational numbers, thereby practical potential of Kim’s non-abelian providing the most convincing evidence thus far Chabauty method, and with her collaborators, in support of the widely believed conjecture that turned it into a powerful tool for identifying the average rank of a rational elliptic curve is ½. integral and rational points on curves that are entirely beyond reach using the traditional After receiving her doctorate from the Chabauty approach. -
Quadratic Chabauty for Atkin-Lehner Quotients of Modular Curves
Quadratic Chabauty for Atkin-Lehner Quotients of Modular Curves of Prime Level and Genus 4, 5, 6 Nikola Adˇzaga1, Vishal Arul2, Lea Beneish3, Mingjie Chen4, Shiva Chidambaram5, Timo Keller6, and Boya Wen7 1Department of Mathematics, Faculty of Civil Engineering, University of Zagreb∗ 2Department of Mathematics, University College London† 3Department of Mathematics and Statistics, McGill University‡ 4Department of Mathematics, University of California at San Diego§ 5Department of Mathematics, University of Chicago¶ 6Department of Mathematics, Universit¨at Bayreuth‖ 7Department of Mathematics, Princeton University∗∗ May 12, 2021 Abstract + We use the method of quadratic Chabauty on the quotients X0 (N) of modular curves X0(N) by their Fricke involutions to provably compute all the rational points of these curves for prime levels N of genus four, five, and six. We find that the only such curves with exceptional rational points are of levels 137 and 311. In particular there are no exceptional rational points on those curves of genus five and six. More precisely, we determine the rational + points on the curves X0 (N) for N = 137, 173, 199, 251, 311, 157, 181, 227, 263, 163, 197, 211, 223, 269, 271, 359. Keywords: Rational points; Curves of arbitrary genus or genus =6 1 over global fields; arithmetic aspects of modular and Shimura varieties 2020 Mathematics subject classification: 14G05 (primary); 11G30; 11G18 1 Introduction + The curve X0 (N) is a quotient of the modular curve X0(N) by the Atkin-Lehner involution wN (also called the Fricke + involution). The non-cuspidal points of X0 (N) classify unordered pairs of elliptic curves together with a cyclic isogeny + of degree N between them, where the Atkin-Lehner involution wN sends an isogeny to its dual. -
Program Cincinnati Solving the Biggest Challenges in the Digital Universe
July 31-Aug 3, 2019 PROGRAM CINCINNATI SOLVING THE BIGGEST CHALLENGES IN THE DIGITAL UNIVERSE. At Akamai, we thrive on solving complex challenges for businesses, helping them digitally transform, outpace competitors, and achieve their goals. Cloud delivery and security. Video streaming. Secure application access. Our solutions make it easier for many of the world’s top brands to deliver the best, most secure digital experiences — in industries like entertainment, sports, gaming, nance, retail, software, and others. We helped broadcasters deliver high-quality live streaming during the 2018 Pyeongchang Games. We mitigated a record-breaking, memcached-fueled 1.3 Tbps DDoS attack. We’ve managed Black Friday web trafc for the biggest retailers on the planet. SECURE AND GROW YOUR BUSINESS. AKAMAI.COM WELCOME TO MAA MATHFEST! The MAA is pleased that you have joined us in Cincinnati for the math event of the summer. What are my favorite things to do at MAA MathFest? Attend the Invited Addresses! When I think back on prior MAA MathFest meetings, the Invited Addresses are the talks that I still remember and that have renewed my excitement for mathematics. This year will continue that tradition. We have excellent speakers presenting on a variety of exciting topics. If you see an Invited Address title that looks interesting, go to that talk. It will be worth it. Remember to attend the three 20-minute talks given by the MAA Adler Teaching Award winners on Friday afternoon. Jumpstart your passion for teaching and come hear these great educators share their TABLE OF CONTENTS insights on teaching, connecting with students, and the answer to “life, the universe and everything” (okay, maybe they won’t talk about 3 EARLE RAYMOND HEDRICK LECTURE SERIES the last item, but I am sure they will give inspiring and motivating presentations). -
Computational Number Theory, Geometry and Physics (Sage Days 53) September 23-29, 2013 Clay Mathematics Institute University of Oxford
Computational Number Theory, Geometry and Physics (Sage Days 53) September 23-29, 2013 Clay Mathematics Institute University of Oxford Abstracts Speaker: Jennifer Balakrishnan Introduction to number theory and Sage This talk will give some applications of Sage to number theory. No previous knowledge of Sage as a computer algebra system is assumed. Speaker: Volker Braun Introduction to mathematical physics and Sage This is the continuation of the first talk, giving some applications in geometry and physics. Speaker: tbc Scientific computing with Python and Cython We will give a quick review of Python and Cython, and how they are used in Sage to tie together scientific codes from various fields. Speaker: Simon King Implementing arithmetic operations in Sage (Coercions and Actions) Sage provides a framework for multiplication between objects of the same type (for example, ring operations) and between different types (for example, group actions). This talk will cover how to take advantage of it in your own code, especially if there is coercion involved. Speaker: Volker Braun Git and the new development workflow Git is a system to collaboratively edit a set of files, and is being used for anything from writing scientific articles to the Linux source code (~16 million lines of source code). I’ll start with a basic introduction to using git for distributed development that is of general interest. The second half will be about the new development workflow in Sage using Git. Speaker: Jean-Pierre Flori p-adics in Sage In this talk, I'll give a quick overview of the current and future implementations of p-adic numbers and related objects in Sage, with a special emphasis on their performance and the different ways offered to deal with inexact elements. -
Lola Thompson
Lola Thompson BASIC INFORMATION: Citizenship: United States Address: Schillerstrasse 18, 37083 G¨ottingen,Germany Phone: +49 1522 2325151 E-mail: [email protected] Website: www.lolathompson.com Languages: English, Spanish APPOINTMENTS HELD: Utrecht University Associate Professor July 2020 - present Max-Planck-Institut f¨urMathematik Guest/Research Visitor September 2019 - June 2020 Guest/Research Visitor August 2016 - December 2016 Oberlin College Associate Professor July 2019 - April 2020 Assistant Professor July 2013 - June 2019 Mathematical Sciences Research Institute Research Member January 2017 - May 2017 The University of Georgia VIGRE Postdoctoral Fellow August 2012 - July 2013 Research Mentor: Paul Pollack EDUCATION: Ph.D. in Mathematics, Dartmouth College June 2012 Adviser: Carl Pomerance Thesis: Products of distinct cyclotomic polynomials M.A. in Mathematics, Dartmouth College June 2009 B.S. in Mathematics, University of Chicago June 2007 B.A. in Economics, University of Chicago June 2007 RESEARCH PUBLICATIONS: 21. Counting Salem numbers of arithmetic hyperbolic 3-orbifolds. Submitted for publication. Joint with Mikhail Belolipetsky, Matilde Lal´ın,and Plinio G. P. Murillo. 20. The Fourier coefficients of Eisenstein series newforms. Contemporary Mathematics, 732 (2019), 169 { 176. Joint with Benjamin Linowitz. 19. Counting and effective rigidity in algebra and geometry. Inventiones Mathematicae, 213, no. 2 (2018), 697 { 758. Joint with Benjamin Linowitz, D. B. McReynolds, Paul Pollack. 18. Divisor-sum fibers. Mathematika, 64, no. 2 (2018), 330{342. Joint with Paul Pollack and Carl Pomerance. 17. Lower bounds for heights in relative Galois extensions. Contributions to Number Theory and Arithmetic Geometry, Springer AWMS 11 (2018), 1{17. Joint with Kevser Akta¸s,Shabnam Akhtari, Kirsti Biggs, Alia Hamieh, and Kathleen Petersen. -
2021 September-October Newsletter
Newsletter VOLUME 51, NO. 5 • SEPTEMBER–OCTOBER 2021 PRESIDENT’S REPORT This is a fun report to write, where I can share news of AWM’s recent award recognitions. Sometimes hearing about the accomplishments of others can make The purpose of the Association for Women in Mathematics is us feel like we are not good enough. I hope that we can instead feel inspired by the work these people have produced and energized to continue the good work we • to encourage women and girls to ourselves are doing. study and to have active careers in the mathematical sciences, and We’ve honored exemplary Student Chapters. Virginia Tech received the • to promote equal opportunity and award for Scientific Achievement for offering three different research-focused the equal treatment of women and programs during a pandemic year. UC San Diego received the award for Professional girls in the mathematical sciences. Development for offering multiple events related to recruitment and success in the mathematical sciences. Kutztown University received the award for Com- munity Engagement for a series of events making math accessible to a broad community. Finally, Rutgers University received the Fundraising award for their creative fundraising ideas. Congratulations to all your members! AWM is grateful for your work to support our mission. The AWM Research Awards honor excellence in specific research areas. Yaiza Canzani was selected for the AWM-Sadosky Research Prize in Analysis for her work in spectral geometry. Jennifer Balakrishnan was selected for the AWM- Microsoft Research Prize in Algebra and Number Theory for her work in computa- tional number theory. -
A Taylor-Made Proof of Fermat's Last Theorem by N.Boston
A Taylor-Made Plug for Wiles' Proof Author(s): Nigel Boston Source: The College Mathematics Journal, Vol. 26, No. 2 (Mar., 1995), pp. 100-105 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/2687360 . Accessed: 01/01/2011 07:42 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=maa. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The College Mathematics Journal. http://www.jstor.org A Taylor-made Plug for Wiles' Proof Nigel Boston Nigel Boston obtained his undergraduate degree at Cambridge Universityand his Ph.D. -
CONTRIBUTED PROBLEMS This Document Is a Compilation Of
CONTRIBUTED PROBLEMS RATIONAL POINTS AND GALOIS REPRESENTATIONS,MAY2021 This document is a compilation of problems and questions recorded at the workshop Rational Points and Galois Representations, hosted by the University of Pittsburgh. The first four items are summaries of advance contributions to the workshop’s problem session, which occurred on May 12, 2021. The organizers thank the problem contributors as well as the session moderator, David Zureick-Brown. Contents. Page 2: Jennifer Balakrishnan, A Chabauty–Coleman solver for curves over number fields Page 3: Jordan S. Ellenberg,Galoisactiononslightlynonabelianfundamentalgroups Page 4: Minhyong Kim, Diophantine geometry and reciprocity laws Page 5: Barry Mazur,AquestionaboutquadraticpointsonX0(N) Page 6: Kirti Joshi, A family of examples with r>gand some questions Page 8: Nicholas Triantafillou, Restriction of scalars Chabauty and solving systems of simulta- neous p-adic power series Page 10: Additional questions and comments, compiled by Jackson Morrow 1 A CHABAUTY–COLEMAN SOLVER FOR CURVES OVER NUMBER FIELDS JENNIFER BALAKRISHNAN For a number of applications (in particular, computing K-rational points on curves over number fields K [Col85a]), it would be very useful to have an implementation of Coleman integration [Col85b] for curves over extensions of the p-adics. In [BT20], Tuitman and I gave an algorithm and Magma implementation [BT] of Coleman integration for curves over Qp. It would be great to extend this to handle curves defined over unramified extensions of Qp.(SeetheworkofBest[Bes21]forthecaseof superelliptic curves over unramified extensions of Qp, combined with algorithmic improvements along the lines of work of Harvey [Har07].) With this in hand, one could then further implement a Chabauty–Coleman solver for curves over number fields that would take as input a genus g curve X defined over a number field K with Mordell– Weil rank r less than g,aprimep of good reduction, and r generators of the Mordell–Weil group modulo torsion and output the finite Chabauty–Coleman set X(Kp)1, which contains the set X(K). -
Arxiv:1804.08763V3 [Math.NT] 10 Jun 2021
COMPLEX MULTIPLICATION AND BRAUER GROUPS OF K3 SURFACES DOMENICO VALLONI ABSTRACT. We study K3 surfaces with complex multiplication following the classical work of Shimura on CM abelian varieties. After we translate the problem in terms of the arithmetic of the CM field and its idèles, we proceed to study some abelian extensions that arise naturally in this context. We then make use of our computations to determine the fields of moduli of K3 surfaces with CM and to classify their Brauer groups. More specif- ically, we provide an algorithm that given a number field K and a CM number field E, returns a finite lists of groups which contains Br.X/GK for any K3 surface X_K that has CM by the ring of integers of E. We run our algorithm when E is a quadratic imaginary field (a condition that translates into X having maximal Picard rank) generalizing similar computations already appearing in the literature. CONTENTS 1. Introduction 1 2. K3 surfaces with CM and their Hodge structures 6 3. Computing the order of singular K3 surfaces 13 4. Brauer groups 15 5. The main theorem of complex multiplication 18 6. Ideal lattices and idèles 20 7. Type of a principal K3 surface with CM 25 8. Main theorem of CM for K3 surfaces (after Shimura) 27 9. K3 class group and K3 class field 29 10. Invariant ideals and K3 class group 33 11. Fields of moduli and applications 36 References 41 1. INTRODUCTION arXiv:1804.08763v3 [math.NT] 10 Jun 2021 As it was shown by Shimura in his seminal work [34] one can study abelian varieties with CM, their torsion points, and their polarizations, only in terms of arithmetic data on their field of complex multiplication. -
Final Report (PDF)
Arithmetic Aspects of Explicit Moduli Problems Nils Bruin (Simon Fraser University) Kiran Kedlaya (University of California San Diego) Samir Siksek (University of Warwick) John Voight (Dartmouth College) May 28, 2017–June 2, 2017 1 Overview of the Field A central theme of modern number theory is understanding the absolute Galois group of the rational numbers GQ = Gal(Q=Q), and more generally GK = Gal(K=K) where K is a number field. The principal approach to this has been to study the action of GQ on objects arising in geometry, especially the p-torsion of elliptic curves. Let E be an elliptic curve defined over Q. This can be given by an equation of the form 2 3 3 2 E : Y = X + AX + B; (A, B 2 Z, 4A + 27B 6= 0): The points of E form a group. The action of GQ on the p-torsion subgroup E[p] gives rise to a mod p representation ρE;p : GQ ! GL2(Fp). Such representations are the subject of two of the most important conjectures in number theory. Both are due to Fields Medalist and Abel Prize winner Jean-Pierre Serre: Serre’s uniformity conjecture (1968) and Serre’s modularity conjecture (1986). Serre’s modularity conjecture was recently proved by Khare and Wintenberger (2009). Another closely related conjecture is the modularity conjecture for elliptic curves over Q, proved by Wiles and Taylor (1995) for semistable elliptic curves over Q, and by Breuil, Conrad, Diamond and Taylor (2001) for all elliptic curves over Q. In proving modularity for semistable elliptic curves, Wiles proved Fermat’s Last Theorem, a question that had vexed mathematicians for 350 years. -
Volume 90 Number 329 May 2021 a M E R I C a N M a T H E M a T I C a L S
VOLUME 90 NUMBER 329 MAY 2021 ISSN 0025-5718 (print) ISSN 1088-6842 (online) AMERICANMATHEMATICALSOCIETY EDITED BY Jennifer Balakrishnan Daniele Boffi Susanne C. Brenner, Managing Editor Martin Burger Coralia Cartis Ronald F. A. Cools Alan Demlow Bruno Despres Alicia Dickenstein Jan Draisma Qiang Du Bettina Eick Howard C. Elman Ivan Graham Ralf Hiptmair Frances Kuo Sven Leyffer Christian Lubich Andrei Mart´ınez-Finkelshtein James McKee Jens Markus Melenk Michael J. Mossinghoff Michael J. Neilan Fabio Nobile Adam M. Oberman Robert Scheichl Igor E. Shparlinski Chi-Wang Shu Andrew V. Sutherland Daniel B. Szyld Barbara Wohlmuth Mathematics of Computation This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathe- matics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology. Submission information. See Information for Authors at the end of this issue. PublicationontheAMSwebsite.Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue. Subscription information. Mathematics of Computation is published bimonthly and is also accessible electronically from www.ams.org/journals/. Subscription prices for Volume 90 (2021) are as follows: for paper delivery, US$846.00 list, US$676.80 insti- tutional member, US$761.40 corporate member, US$507.60 individual member; for elec- tronic delivery, US$744.00 list, US$595.20 institutional member, US$669.60 corporate member, US$446.40 individual member. -
Memories of Goro Shimura Don Blasius, Toni Bluher, Haruzo Hida, Kamal Khuri-Makdisi, Kenneth Ribet, Alice Silverberg, and Hiroyuki Yoshida
Memories of Goro Shimura Don Blasius, Toni Bluher, Haruzo Hida, Kamal Khuri-Makdisi, Kenneth Ribet, Alice Silverberg, and Hiroyuki Yoshida Goro Shimura, a mathematician who greatly influenced number theory in the second half of the twentieth cen- tury, was born in Japan on February 23, 1930. Over a career spanning six decades, he repeatedly made transfor- mational discoveries that stimulated new lines of inves- tigation and played a central role in the development of the field. Shimura earned his degrees at the University of Tokyo and held appointments at the University of Tokyo and Osaka University. He was a professor at Princeton Uni- versity from 1964 until he retired in 1999. He authored numerous influential books and papers and was awarded a Guggenheim Fellowship in 1970, the Cole Prize in Num- ber Theory in 1977, the Asahi Prize in 1991, and the Steele Prize for Lifetime Achievement in 1996. Goro Shimura passed away in Princeton on May 3, 2019, at the age of eighty-nine. Don Blasius Goro Shimura advised my 1981 Princeton thesis and he was, through his research and guidance, the central figure of my intellectual life in graduate school and for many years afterwards. His ideas about how to do mathematics have influenced me throughout my career. Figure 1. Goro, Chikako, Haru, and Tomoko returning to the Arriving at Princeton in fall 1977, I had no plan to study US from Haneda Airport in 1971. number theory, had never read a book about it, and had never heard of Shimura, Iwasawa, Dwork, Langlands, or offering of an introductory course in algebraic number even Weil.