Borel and Analytic Sets in Locales
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Structure of Gunk: Adventures in the Ontology of Space
The Structure of Gunk: Adventures in the Ontology of Space Jeff Sanford Russell February 16, 2009 1 Points and gunk Here are two ways space might be (not the only two): (1) Space is “pointy”. Ev- ery finite region has infinitely many infinitesimal, indivisible parts, called points. Points are zero-dimensional atoms of space. In addition to points, there are other kinds of “thin” boundary regions, like surfaces of spheres. Some regions include their boundaries—the closed regions—others exclude them—the open regions—and others include some bits of boundary and exclude others. Moreover, space includes unextended regions whose size is zero. (2) Space is “gunky”.1 Every region contains still smaller regions—there are no spatial atoms. Every region is “thick”—there are no boundary regions. Every region is extended. Pointy theories of space and space-time—such as Euclidean space or Minkowski space—are the kind that figure in modern physics. A rival tradition, most famously associated in the last century with A. N. Whitehead, instead embraces gunk.2 On the Whiteheadian view, points, curves and surfaces are not parts of space, but rather abstractions from the true regions. Three different motivations push philosophers toward gunky space. The first is that the physical space (or space-time) of our universe might be gunky. We posit spatial reasons to explain what goes on with physical objects; thus the main reason Dean Zimmerman has been a relentless source of suggestions and criticism throughout the writing of this paper. Thanks are also due to Frank Arntzenius, Kenny Easwaran, Peter Forrest, Hilary Greaves, John Hawthorne, and Beatrice Sanford for helpful comments. -
On &Free Boolean Algebras*
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Annals of Pure and Applied Logic 55 (1992) 265-284 265 North-Holland On &free Boolean algebras* SakaC Fuchino* * , Sabine Koppelberg* * Fachbereich Mathematik, II. Mathematisches Institut, Freie Uniuersitiit Berlin, Arnimallee 3, W-l&W Berlin 33, Germany Makoto Takahashi Department of Mathematics, College of Liberal Arts, Kobe University, 1-2-1 Tsurukabuto Nada, Kobe, 657 Japan Communicated by A. Prestel Received 18 April 1991 Abstract Fuchino, S., S. Koppelberg and M. Takahashi, On L,,- free Boolean algebras, Annals of Pure and Applied Logic 55 (1992) 265-284. We study L-,-freeness in the variety of Boolean algebras. It is shown that some of the theorems on L,,- free algebras which are known to hold in varieties such as groups, abelian groups etc. are also true for Boolean algebras. But we also investigate properties such as the ccc of L,,, -free Boolean algebras which have no counterpart in the varieties above. 0. Introduction For a cardinal K and a fixed variety 7f in a countable language, an algebra A in 7f is said to be L,,-free if A is L,,-equivalent to a free algebra in “Ir. L-,-free algebras in various varieties have been investigated by several authors (see e.g. [3,4,5, 161). In this paper we shall study the case of the variety of Boolean algebras. The most distinctive property of Boolean algebras in this connection is that every atomless (i.e., L,,-free) Boolean algebra of size w, has the property that the set of all countable free subalgebras is closed unbounded in the set of all countable subalgebras. -
Positive Fragments of Coalgebraic Logics∗
Logical Methods in Computer Science Vol. 11(3:18)2015, pp. 1–51 Submitted Feb. 23, 2014 www.lmcs-online.org Published Sep. 22, 2015 POSITIVE FRAGMENTS OF COALGEBRAIC LOGICS ∗ ADRIANA BALAN a, ALEXANDER KURZ b, AND JIRˇ´I VELEBIL c a University Politehnica of Bucharest, Romania e-mail address: [email protected] b University of Leicester, United Kingdom e-mail address: [email protected] c Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic e-mail address: [email protected] Abstract. Positive modal logic was introduced in an influential 1995 paper of Dunn as the positive fragment of standard modal logic. His completeness result consists of an axiomatization that derives all modal formulas that are valid on all Kripke frames and are built only from atomic propositions, conjunction, disjunction, box and diamond. In this paper, we provide a coalgebraic analysis of this theorem, which not only gives a conceptual proof based on duality theory, but also generalizes Dunn’s result from Kripke frames to coalgebras for weak-pullback preserving functors. To facilitate this analysis we prove a number of category theoretic results on functors on the categories Set of sets and Pos of posets: Every functor Set → Pos has a Pos-enriched left Kan extension Pos → Pos. Functors arising in this way are said to have a presentation in discrete arities. In the case that Set → Pos is actually Set-valued, we call the corresponding left Kan extension Pos → Pos its posetification. A set functor preserves weak pullbacks if and only if its posetification preserves exact squares. -
Extending Obstructions to Noncommutative Functorial Spectra
EXTENDING OBSTRUCTIONS TO NONCOMMUTATIVE FUNCTORIAL SPECTRA BENNO VAN DEN BERG AND CHRIS HEUNEN Abstract. Any functor from the category of C*-algebras to the category of locales that assigns to each commutative C*-algebra its Gelfand spectrum must be trivial on algebras of n-by-n matrices for n ≥ 3. This obstruction also applies to other spectra such as those named after Zariski, Stone, and Pierce. We extend these no-go results to functors with values in (ringed) topological spaces, (ringed) toposes, schemes, and quantales. The possibility of spectra in other categories is discussed. 1. Introduction The spectrum of a commutative ring is a leading tool of commutative algebra and algebraic geometry. For example, a commutative ring can be reconstructed using (among other ingredients) its Zariski spectrum, a coherent topological space. Spectra are also of central importance to functional analysis and operator algebra. For example, there is a dual equivalence between the category of commutative C*-algebras and compact Hausdorff topological spaces, due to Gelfand.1 A natural question is whether such spectra can be extended to the noncommu- tative setting. Indeed, many candidates have been proposed for noncommutative spectra. In a recent article [23], M. L. Reyes observed that none of the proposed spectra behave functorially, and proved that indeed they cannot, on pain of trivial- izing on the prototypical noncommutative rings Mn(C) of n-by-n matrices with complex entries. To be precise: any functor F : Ringop → Set that satisfies F (C) = Spec(C) for commutative rings C, must also satisfy F (Mn(C)) = ∅ for n ≥ 3. -
Locales in Functional Analysis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 70 (1991) 133-145 133 North-Holland Locales in functional analysis Joan Wick Pelletier Department of Mathematics, York University, North York, Ontario, Canada M3J IP3 Received 25 October 1989 Revised 1 June 1990 Abstract Pelletier, J.W., Locales in functional analysis, Journal of Pure and Applied Algebra 70 (1991) 133-145. Locales, as a generalization of the notion of topological space, play a crucial role in allowing theorems of functional analysis which classically depend on the Axiom of Choice to be suitably reformulated and proved in the intuitionistic context of a Grothendieck topos. The manner in which locales arise and the role they play are discussed in connection with the Hahn-Banach and Gelfand duality theorems. Locales have long been recognized as an important generalization of the notion of topological space, a notion which permits the study of topological questions in contexts where intuitionistic logic rather than Boolean logic prevails and in which spaces without points occur naturally. An excellent exposition of the history of this generalization can be found in Johnstone’s article, “The point of pointless topo- logy” [7]. The appearance of locales in functional analysis came about through the emer- gence of a need to do analysis in a more general context than the classical one. In this expository article we shall explore generalizations of two theorems which il- lustrate this phenomenon-the Hahn-Banach theorem and the Gelfand duality theorem in the setting of a Grothendieck topos. -
A Note on Baire Spaces and Continuous Lattices
BULL. AUSTRAL. MATH. SOC. 06A20, 46L05, 54DI0, 54D99 VOL. 21 (1980), 265-279. A NOTE ON BAIRE SPACES AND CONTINUOUS LATTICES KARL H. HOFMANN We prove a Baire category theorem for continuous lattices and derive category theorems for non-Hausdorff spaces which imply a category theorem of Isbel I 's and have applications to the spectral theory of C*-algebras. The same lattice theoretical methods yield a proof of de Groot's category theorem for regular subc ompac t spac e s. 1. Background and main results A topological space is a Baire space if any countable intersection of dense open sets is dense. The classical result on such spaces is the category theorem of Baire. THEOREM A (Baire). A space is a Baire space if it is locally compact Hausdorff or completely metrizable. This theorem is eminently useful in analysis and topological algebra; one need only recall the open mapping theorems for topological groups and topological vector spaces (see, for example, [7], p. 120) or of theorems in which joint continuity of a two variable function is deduced from separate continuity (see, for example, [7], p. 121, [73], [74], [75]). Basic properties of Baire spaces and their applications are developed in standard texts such as Bourbaki's [7]. The Baire category theorem is in reality two theorems in one; it was de Groot who succeeded in finding a common generalisation of the two. He formulated the following condition [7]. Received 25 October 1979- 265 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.76, on 28 Sep 2021 at 10:53:03, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. -
The Point of Pointless Topology1
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 8, Number 1, January 1983 THE POINT OF POINTLESS TOPOLOGY1 BY PETER T. JOHNSTONE Introduction. A celebrated reviewer once described a certain paper (in a phrase which never actually saw publication in Mathematical Reviews) as being concerned with the study of "valueless measures on pointless spaces". This article contains nothing about measures, valueless or otherwise; but I hope that by giving a historical survey of the subject known as "pointless topology" (i.e. the study of topology where open-set lattices are taken as the primitive notion) I shall succeed in convincing the reader that it does after all have some point to it. However, it is curious that the point (as I see it) is one which has emerged only relatively recently, after a substantial period during which the theory of pointless spaces has been developed without any very definite goal in view. I am sure there is a moral here; but I am not sure whether it shows that "pointless" abstraction for its own sake is a good thing (because it might one day turn out to be useful) or a bad thing (because it tends to obscure whatever point there might be in a subject). That much I shall leave for the reader to decide. This article is in the nature of a trailer for my book Stone spaces [35], and detailed proofs of (almost) all the results stated here will be found in the book (together with a much fuller bibliography than can be accommodated in this article). -
A Site-Theoretic Characterization of Points in a Topological Space
A SITE-THEORETIC CHARACTERIZATION OF POINTS IN A TOPOLOGICAL SPACE ANDREW ARCHIBALD, PETE L. CLARK, AND DAVID SAVITT Abstract. We study points in the context of Grothendieck topologies (sites), especially the relationship between \honest" points of a topological space X and site-theoretic points of Xtop. We o®er an elementary and self-contained proof of a theorem of Grothendieck-Hakim which gives necessary and su±cient conditions for these two notions to coincide. We also explore analogues of this result for other sites encountered in geometry by giving axioms on a site su±cient to ensure the correspondence between site-theoretic points and the points of a certain topological space. These axioms are satis¯ed for the ¶etale, fppf, fpqc and crystalline sites. They are not satis¯ed by the large ¶etalesite of Spec C, in which (as we show) the site-theoretic points form a proper class. 1. Introduction Recall that a site, or Grothendieck topology (C; T ), consists of (i) a category C possessing a ¯nal object and closed under ¯ber products, together with (ii) for each object U in C, a distinguished collection of families of morphisms fUi ! Ugi2I , called the covering families of U. We require the following properties: (GT1) If U 0 ! U is an isomorphism, then fU 0 ! Ug is a covering family. (GT2) If fUi ! Ugi2I is a covering family and V ! U is a morphism, then fUi £U V ! V gi2I is a covering family of V . (GT3) If fUi ! Ugi2I is a covering family and for each i 2 I, fVi;j ! Uigj2J is a covering family of Ui, then the composite family fVi;j ! Ui ! Ug(i;j)2I£J is a covering family of U. -
Menger and Nöbeling on Pointless Topology
Logic and Logical Philosophy Volume 22 (2013), 145–165 DOI: 10.12775/LLP.2013.009 Mathieu Bélanger Jean-Pierre Marquis MENGER AND NÖBELING ON POINTLESS TOPOLOGY Abstract. This paper looks at how the idea of pointless topology itself evolved during its pre-localic phase by analyzing the definitions of the con- cept of topological space of Menger and Nöbeling. Menger put forward a topology of lumps in order to generalize the definition of the real line. As to Nöbeling, he developed an abstract theory of posets so that a topological space becomes a particular case of topological poset. The analysis empha- sizes two points. First, Menger’s geometrical perspective was superseded by an algebraic one, a lattice-theoretical one to be precise. Second, Menger’s bottom–up approach was replaced by a top–down one. Keywords: pointless topology, Karl Menger, Georg Nöbeling, lattice theory, abstraction, generalization 1. Introduction Historically, Karl Menger appears to have been the first to raise the idea of a point-free definition of the concept of topological space. In his 1928 book Dimensionstheorie [16], he indeed proposed to define the general concept of space without referring to the points of an underlying set, but rather using pieces or, as he liked to say, lumps.1 In doing so, Menger 1 Menger was also interested in geometry, especially in what he at times called metrical, set-theoretical or even general geometry. See [16, 17, 18, 21]. He also made suggestions towards pointless geometry, the most notable of which was an algebra of geometry based on the operations of join and meet. -
Arxiv:1804.08466V1 [Math.OA]
Recovering the boundary path space of a topological graph using pointless topology Gilles G. de Castro Abstract. First, we generalize the definition of a locally compact topology given by Paterson and Welch for a sequence of locally compact spaces to the case where the underlying spaces are T1 and sober. We then consider a certain semilattice of basic open sets for this topology on the space of all paths on a graph and impose relations motivated by the definitions of graph C*-algebra in order to recover the boundary path space of a graph. This is done using techniques of pointless topology. Finally, we generalize the results to the case of topological graphs. 1. Introduction Topological graphs and their C*-algebras were introduced by Katsura as a way of generalizing both graph C*-algebras and homeomorphism C*-algebras [7]. One usually would like to describe a C*-algebra as a groupoid C*-algebra in order to use techniques introduced by Renault [15]. For topological graph C*-algebras, this was done by Yeend [19]. The unit space of Yeend’s groupoid is the boundary path space of the topological graph (see [8] for the proof that Yeend’s definition and the one we use here are the same). To understand the necessity of the boundary path space, we start by considering finite graphs. In this case, one can associate a compact space of infinite paths as a subspace of a a infinite product of finite sets, namely the vertices set. These are examples of one-sided shift spaces, and more specifically shifts of finite type [11]. -
INTRODUCTION to CATEGORICAL LOGIC 1. Motivation We Want To
INTRODUCTION TO CATEGORICAL LOGIC JOSEPH HELFER 1. Motivation We want to discuss Logic \from scratch" { that is, without any assumptions about any notions the reader may have of what logic is about or what \mathematical logic" is as a field. We start simply by saying that logic is some part of our experience of reality that we want to understand { something to do with our capacity for thought, and the fact that our thought seems to have some kind of structure, or follow some kind of rules. We first want to identify (at least as a first approximation) what logic is about. As an analogy, physics is also about a part of our experience of reality. Our basic intuition about physics is that it is about physical objects { books, chairs, balls, and the like { and their properties. Indeed, the first (mathematical) physical theories { those of Galileo, Descartes, and Newton { describe the motion of such objects, the forces which act upon them, and so forth. Later, the kinds of things studied by physics { for example fields and thermodynamics systems { become more refined and complicated. Similarly, we start with a simple view of what logic is about, allowing for refinements later on: logic is primarily about propositions and their truth. That is: it is a basic phenomenon that people make statements, and sometimes we observe them to be true (or false), and sometimes it is not immediately clear whether they are true, but we can decide it after some consideration. In logic, then, we are trying to investigate the relation of propositions to their truth, and to our capacity for deciding it. -
Variations of Independence in Boolean Algebras
Variations of independence in Boolean Algebras Corey T. Bruns March 13, 2008 arXiv:0811.2610v2 [math.LO] 18 Nov 2008 1 c 2008 Corey T. Bruns This work is licensed under the Creative Commons Attribution-Noncommercial- Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran- cisco, California, 94105, US Contents 1 n-free Boolean Algebras 4 1.1 Definition of n-free............................ 4 1.2 DefinitionofGraphSpace .. .. .. .. .. .. .. .. .. .. 10 1.3 Previous results on Graph Spaces and 2-free boolean algebras . ... 11 1.4 Graphs and their (Anti)clique Algebras . 12 1.5 Hypergraphs and their Anticlique Algebras . 16 1.6 HypergraphSpaces............................ 18 1.7 AlgebraicConstructions . .. .. .. .. .. .. .. .. .. .. 19 1.8 CardinalFunctionResults . 24 1.8.1 Spread............................... 25 1.8.2 Character............................. 26 1.8.3 Length............................... 26 1.8.4 Cellularity . 27 1.8.5 Independence........................... 27 1.8.6 NumberofEndomorphisms . 27 1.8.7 NumberofAutomorphisms . 27 2 n-independenceinotherBooleanAlgebras 31 2.1 nInd.................................... 31 2.2 Maximal n-independencenumber . 32 3 Ideal Independence 38 3.1 A necessary condition for maximality . 38 4 Moderation in Boolean Algebras 40 4.1 Definitions................................. 40 4.2 Incomparability.............................. 42 2 List of Figures 1.1 Relationship of Cardinal Functions on ω-free boolean algebras. 29 3 Chapter 1 n-free Boolean Algebras 1.1 Definition of n-free A boolean algebra A is free over its subset X if it has the universal property that every function f from X to a boolean algebra B extends to a unique homomorphism.