Lufthansa Orders 20 Additional A350-900 Wide-Body Aircraft @Lufthansa @Airbus #A350 XWB #Longrangeleader
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improving Passenger Experiences
IMPROVING PASSENGER EXPERIENCES Meeting the Expectations of Modern Passengers Customer experiences are composed of every interaction between 3 The Customer Expectation Framework an organization and its customers throughout their relationship. In industries of all kinds, this relationship is becoming more and more 86% 4 Staying Connected in the Sky important to success. of buyers are willing to pay more for a great customer 5 Entertainment at 30,000 Feet Customers simply expect more - and not just more product for their experience. 6 Reduced Turbulence for Smoother Flights money. They expect a more consistent and fulfilling experience 7 Faster Turnarounds for More from the moment they begin searching for a product like air travel to long after the flight is over. On-Time Arrivals and Departures 8 Air Quality and Temperature Control When customers book air travel, they don’t just buy tickets. They buy an experience. So for airlines, business aviation operators and 73% for More Comfortable Cabins others, the quest is on to maximize that experience. They must of buyers point to customer experience as an important 9 Spotlight on Airliners transform the way flight works to build a new, more customer- factor in purchasing decisions.1 centered future for air travel. Doing so requires seeing each step of 10 Spotlight on Helicopters the experience from the viewpoint of the customer. 11 Spotlight on Business Jets 12 Honeywell Solutions for Comfort and Passenger Experience 13 User-Focused Communication Systems 14 Solutions for Reducing Weather Hazards and Turbulence 15 Tools to Achieve Better On-Time Performance 16 Systems for Optimized Temperature and Air Quality 1. -
Services of the A350 XWB | August 2015
More mobility for the world th ing e f in u Services for the A350 XWB a t t u r n e i a Extra-wide support M NEW 0 A 5 irbus A3 The new shape of maintenance With the entry into service of the A350 XWB (extra-wide body), Airbus is ushering in a new era in commercial aviation – ultra-efficient long-range travel in a new aircraft class. Yet support by an experienced MRO provider is essential in order to make the most of the excellent qualities this new twin-jet aircraft promises. Turning a vision into a profitable reality Preparation on the ground means success in the air Lufthansa Technik has always played an important role in the The Airbus A350 XWB is another quantum leap in technology, from unprecedented success story of Airbus: our engineers have the large share of carbon fiber composites and titanium alloys contributed valuable technical and commercial expertise to the used in its structure to its highly advanced turbofan engines. Since development of new Airbus aircraft. No other MRO provider a number of its system technologies are derivatives of its larger can can be proud of such a strong history of supporting aircraft sister, the A380 – such as the solid state power control, variable development. With the newest Airbus twin jet, Lufthansa Technik frequency generators and high-pressure hydraulics – Lufthansa once again helped to turn the vision of a new aircraft into a Technik has already gained substantial experience with these new working reality. Lufthansa Technik’s engineers participated in systems and their specific features. -
Air Transport Industry Analysis Report
Annual Analyses of the EU Air Transport Market 2016 Final Report March 2017 European Commission Annual Analyses related to the EU Air Transport Market 2016 328131 ITD ITA 1 F Annual Analyses of the EU Air Transport Market 2013 Final Report March 2015 Annual Analyses of the EU Air Transport Market 2013 MarchFinal Report 201 7 European Commission European Commission Disclaimer and copyright: This report has been carried out for the Directorate General for Mobility and Transport in the European Commission and expresses the opinion of the organisation undertaking the contract MOVE/E1/5-2010/SI2.579402. These views have not been adopted or in any way approved by the European Commission and should not be relied upon as a statement of the European Commission's or the Mobility and Transport DG's views. The European Commission does not guarantee the accuracy of the information given in the report, nor does it accept responsibility for any use made thereof. Copyright in this report is held by the European Communities. Persons wishing to use the contents of this report (in whole or in part) for purposes other than their personal use are invited to submit a written request to the following address: European Commission - DG MOVE - Library (DM28, 0/36) - B-1049 Brussels e-mail (http://ec.europa.eu/transport/contact/index_en.htm) Mott MacDonald, Mott MacDonald House, 8-10 Sydenham Road, Croydon CR0 2EE, United Kingdom T +44 (0)20 8774 2000 F +44 (0)20 8681 5706 W www.mottmac.com Issue and revision record StandardSta Revision Date Originator Checker Approver Description ndard A 28.03.17 Various K. -
Electric Airports
Electric Airports In the next few years, it is highly likely that the global aircraft fleet will undergo a transformative change, changing air travel for everyone. This is a result of advances in battery technology, which are making the viability of electric aircraft attractive to industry leaders and startups. The reasons for switching from a fossilfueled to electric powertrain are not simply environmental, though aircraft do currently contribute around 3% of global carbon dioxide emissions [1]. Electric aircraft will provide convenient, comfortable, cheap and fast transportation for all. This promise provides a powerful incentive for large companies such as Airbus and many small startups to work on producing compelling electric aircraft. There are a number of fundamental characteristics that make electric aircraft appealing. The most intuitive is that they are predicted to produce very little noise, as the propulsion system does not rely on violent combustion [2]. This makes flying much quieter for both passengers and people around airports. As they do not need oxygen for burning jet fuel, they can fly much higher, which in turn will make them faster than today’s aircraft as air resistance decreases with altitude [3]. The most exciting characteristic is that electric aircraft could make vertical takeoff and landing, or VTOL, flight a possibility for everyone. Aircraft currently take off using a long runway strip, gaining speed until there is enough airflow over the wings to fly. It obviously doesn’t have to be this way, as helicopters have clearly demonstrated. You can just take off vertically. Though helicopters are far too expensive and slow for us to use them as airliners. -
Skyteam Global Airline Alliance
Annual Report 2005 2005 Aeroflot made rapid progress towards membership of the SkyTeam global airline alliance Aeroflot became the first Russian airline to pass the IATA (IOSA) operational safety audit Aeroflot annual report 2005 Contents KEY FIGURES > 3 CEO’S ADDRESS TO SHAREHOLDERS> 4 MAIN EVENTS IN 2005 > 6 IMPLEMENTING COMPANY STRATEGY: RESULTS IN 2005 AND PRIORITY TASKS FOR 2006 Strengthening market positions > 10 Creating conditions for long-term growth > 10 Guaranteeing a competitive product > 11 Raising operating efficiency > 11 Developing the personnel management system > 11 Tasks for 2006 > 11 AIR TRAFFIC MARKET Global air traffic market > 14 The passenger traffic market in Russia > 14 Russian airlines: main events in 2005 > 15 Market position of Aeroflot Group > 15 CORPORATE GOVERNANCE Governing bodies > 18 Financial and business control > 23 Information disclosure > 25 BUSINESS IN 2005 Safety > 28 Passenger traffic > 30 Cargo traffic > 35 Cooperation with other air companies > 38 Joining the SkyTeam alliance > 38 Construction of the new terminal complex, Sheremetyevo-3 > 40 Business of Aeroflot subsidiaries > 41 Aircraft fleet > 43 IT development > 44 Quality management > 45 RISK MANAGEMENT Sector risks > 48 Financial risks > 49 Insurance programs > 49 Flight safety risk management > 49 PERSONNEL AND SOCIAL RESPONSIBILITY Personnel > 52 Charity activities > 54 Environment > 55 SHAREHOLDERS AND INVESTORS Share capital > 58 Securities > 59 Dividend history > 61 Important events since December 31, 2005 > 61 FINANCIAL REPORT Statement -
9/11 Report”), July 2, 2004, Pp
Final FM.1pp 7/17/04 5:25 PM Page i THE 9/11 COMMISSION REPORT Final FM.1pp 7/17/04 5:25 PM Page v CONTENTS List of Illustrations and Tables ix Member List xi Staff List xiii–xiv Preface xv 1. “WE HAVE SOME PLANES” 1 1.1 Inside the Four Flights 1 1.2 Improvising a Homeland Defense 14 1.3 National Crisis Management 35 2. THE FOUNDATION OF THE NEW TERRORISM 47 2.1 A Declaration of War 47 2.2 Bin Ladin’s Appeal in the Islamic World 48 2.3 The Rise of Bin Ladin and al Qaeda (1988–1992) 55 2.4 Building an Organization, Declaring War on the United States (1992–1996) 59 2.5 Al Qaeda’s Renewal in Afghanistan (1996–1998) 63 3. COUNTERTERRORISM EVOLVES 71 3.1 From the Old Terrorism to the New: The First World Trade Center Bombing 71 3.2 Adaptation—and Nonadaptation— ...in the Law Enforcement Community 73 3.3 . and in the Federal Aviation Administration 82 3.4 . and in the Intelligence Community 86 v Final FM.1pp 7/17/04 5:25 PM Page vi 3.5 . and in the State Department and the Defense Department 93 3.6 . and in the White House 98 3.7 . and in the Congress 102 4. RESPONSES TO AL QAEDA’S INITIAL ASSAULTS 108 4.1 Before the Bombings in Kenya and Tanzania 108 4.2 Crisis:August 1998 115 4.3 Diplomacy 121 4.4 Covert Action 126 4.5 Searching for Fresh Options 134 5. -
Type-Certificate Data Sheet
TCDS EASA.A.151 AIRBUS A350 Issue 24 Date: 26 June 2020 TYPE-CERTIFICATE DATA SHEET No. EASA.A.151 AIRBUS A350 Type Certificate Holder: AIRBUS S.A.S. 2 Rond-point Emile Dewoitine 31700 BLAGNAC FRANCE Airworthiness Category: Large Aeroplanes For Model(s): A350-941 A350-1041 Page 1 / 31 TCDS EASA.A.151 AIRBUS A350 Issue 24 Date: 26 June 2020 Table of Contents SECTION 1: A350-900 SERIES 4 I. GENERAL 4 1. Type/Model 4 2. Performance Class 4 3. Certifying Authority 4 4. Manufacturer 4 5. EASA Certification Application Date 4 6. EASA Type Certification Date 4 II. CERTIFICATION BASIS 5 1. EASA Certification Basis 5 2. Special Conditions 5 3. Exemptions / Deviations 6 4. Equivalent safety findings (21A.21(c)(2)) 7 5. Environmental requirements 7 6. Operational Suitability Data 8 III. TECHNICAL CHARACTERISTICS AND OPERATIONAL LIMITATIONS 9 1. A350-900 powered by RR engines 9 2. Data pertinent to all A350-900 series 11 IV. OPERATING AND SERVICE INSTRUCTIONS 15 1. Aircraft Flight Manual 15 2. Maintenance Instructions and Airworthiness Limitations 15 3. ETOPS 15 V. OPERATIONAL SUITABILITY DATA (OSD) 16 1. Master Minimum Equipment List 16 2. Flight Crew Data 16 3. Cabin Crew Data 16 SECTION 2: A350-1000 SERIES 17 I. GENERAL 17 1. Type/Model 17 2. Performance Class 17 3. Certifying Authority 17 4. Manufacturer 17 5. EASA Certification Application Date 17 6. EASA Type Certification Date 17 II. CERTIFICATION BASIS 18 1. EASA Certification Basis 18 2. Special Conditions 18 3. Exemptions / Deviations 19 4. Equivalent safety findings (21A.21(c)(2)) 19 5. -
A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner
A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner Andrew S. Hahn 1 NASA Langley Research Center, Hampton, VA, 23681 Most jet airliner conceptual designs adhere to conventional takeoff and landing performance. Given this predominance, takeoff and landing performance has not been critical, since it has not been an active constraint in the design. Given that the demand for air travel is projected to increase dramatically, there is interest in operational concepts, such as Metroplex operations that seek to unload the major hub airports by using underutilized surrounding regional airports, as well as using underutilized runways at the major hub airports. Both of these operations require shorter takeoff and landing performance than is currently available for airliners of approximately 100-passenger capacity. This study examines the issues of modeling performance in this now critical flight regime as well as the impact of progressively reducing takeoff and landing field length requirements on the aircraft’s characteristics. Nomenclature CTOL = conventional takeoff and landing FAA = Federal Aviation Administration FAR = Federal Aviation Regulation RJ = regional jet STOL = short takeoff and landing UCD = three-dimensional Weissinger lifting line aerodynamics program I. Introduction EMAND for air travel over the next fifty to D seventy-five years has been projected to be as high as three times that of today. Given that the major airport hubs are already congested, and that the ability to increase capacity at these airports by building more full- size runways is limited, unconventional solutions are being considered to accommodate the projected increased demand. Two possible solutions being considered are: Metroplex operations, and using existing underutilized runways at the major hub airports. -
Airbus Develops New A380 Cabin Enablers, Including “New Forward Stairs” Option
Airbus develops new A380 cabin enablers, including “New Forward Stairs” option By Melissa Silva on April, 10 2017 | Inflight Entertainment Airbus is developing a full spectrum of new cabin enablers for customers of its flagship A380 airliner. The latest is the “New Forward Stairs” (NFS) option, which was presented last week at the Aircraft Interiors Expo (AIX) in Hamburg. Together these cabin enhancements will make the already efficient and comfortable airliner even better: Overall cabin optimization is expected to result in the freeing-up of more cabin floor space for around 80 additional passengers, bringing airlines significant additional revenues. “Continuous improvement of our products is our daily work," said Dr. Kiran Rao, EVP of Strategy and Marketing at Airbus Commercial Aircraft. "This new package for our A380 customers is a smart way to meet airline needs while improving the A380 economics with additional revenues and innovating in passenger comfort.” Dr. Rao added: “Only the A380 has the economies of scale and development potential to efficiently solve the problem of increasing congestion at large airports while providing the best comfort for passengers. The aircraft can also serve fast growing markets and airlines' regional airports, so we are adapting the aircraft to meet evolving market needs.” With this latest proposal of the NFS option, the package of new cabin enablers for the A380 now comprises the following: 1 Copyright DutyFree Magazine. All rights reserved. New Forward Stairs — 20 more passengers (Business, Premium Economy and Economy Classes) The NFS involves relocation of the forward stair from door 1 to door 2, and combining the entrance of the NFS to the upper deck (going up), with the adjacent staircase to the lower-deck crew-rest (going down). -
Airbus A350 Aftermarket Services Global Sales
Airbus A350 Aftermarket Services Global Sales Our regional business development managers are focused on working with you to understand the specific needs of your organization. Our managers work closely with our customer support team to convey your needs and develop tailored support programs to best address your objectives. General Manager Director, Global Aftermarket Commercial Aircraft Sales & Business Development Mark Brooks Andrea Davis Tel: +1 716 361 9704 Tel: +1 716 517 0085 [email protected] [email protected] Moog Inc. is a worldwide designer, manufacturer, and integrator of precision motion control products and systems. Over the past 60 years, we have developed a reputation for delivering innovative solutions for the most challenging motion control applications. As a result, we have Sales Manager, Account Manager, Sales Manager, Sales Manager, become a key supplier to the world’s leading aircraft manufacturers and are positioned on Americas Europe Northern Europe China virtually every platform in the marketplace – supplying reliable actuation systems that are Tim Leach Judith Bindert Phill Parsons Bruce Zhang highly supportable and add significant value for our customers. Tel: +1 716 864 7194 Tel: +49 171 261 0372 Tel: +44 7764 894719 Tel: +86 135 0126 0296 [email protected] [email protected] [email protected] [email protected] A key element of our success has been our customer focus. With Moog, you will find a team Technical Sales Manager, Technical Sales Manager, Technical Sales Manager, Technical Sales Manager, of people ready to deliver quality products and support services, all while being flexible and Global Europe Middle East, Africa Asia Pacific responsive to your needs. -
Transatlantic Airline Fuel Efficiency Ranking, 2017
WHITE PAPER SEPTEMBER 2018 TRANSATLANTIC AIRLINE FUEL EFFICIENCY RANKING, 2017 Brandon Graver, Ph.D., and Daniel Rutherford, Ph.D. www.theicct.org [email protected] BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON ACKNOWLEDGMENTS The authors thank Tim Johnson, Andrew Murphy, Anastasia Kharina, and Amy Smorodin for their review and support. We also acknowledge Airline Data Inc. for providing processed BTS data, and FlightGlobal for Ascend Fleet data. International Council on Clean Transportation 1225 I Street NW Suite 900 Washington, DC 20005 USA [email protected] | www.theicct.org | @TheICCT © 2018 International Council on Clean Transportation TRANSATLANTIC AIRLINE FUEL EFFICIENCY RANKING, 2017 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ iii 1. INTRODUCTION .................................................................................................................... 2 2. METHODOLOGY ................................................................................................................... 3 2.1 Airline selection .................................................................................................................................3 2.2 Fuel burn modeling..........................................................................................................................5 2.3 Fuel efficiency calculation ............................................................................................................6 -
EGNOS BULLETIN Issue 34, Autumn’20 Edition
EGNOS BULLETIN Issue 34, Autumn’20 Edition Credits: Finnair https://egnos-user-support.essp-sas.eu/ https://www.essp-sas.eu/ 2 EGNOS BULLETIN | ISSUE 34 | AUTUMN’20 EDITION EGNOS implementation EGNOS BULLETIN | ISSUE 34 | AUTUMN’20 EDITION 3 EGNOS Success Stories FINNAIR’S A350 TRANSCONTINENTAL ROUNDTRIP USING SBAS LPV (WAAS & EGNOS) AT BOTH ORIGIN AND DESTINATION AIRPORTS Finnair’s A350 transcontinental roundtrip using SBAS LPV (WAAS & EGNOS) at both origin and destination airports Credits: Finnair Landing at HEL airport Finnair’s strategic vision of the future includes Moreover, they also confirmed the ADS-B out fundamental fleet management decisions that option, which is now an almost-basic requirement have borne fruit years later. to comply with EASA’s implementing rule and FAA As a launch customer of the Airbus A350 XWB, one. Both decisions made Finnair’s A350 future- Finnair received its first A350-900 in October 2015. proof from the manufacturing line. Five years later, Captain Marko Valtonen, Finnair’s Operational approval Fleet Chief Pilot for the A330/350, has performed Apart from airworthiness, the flight operation the first known transcontinental roundtrip between elements that allowed Finnair to perform those Europe and the USA using SBAS LPV approaches RNP APCH down to LPV minima comprised at both origin and destination airports with the two main activities: the training A350 (tail OH-LWI). of pilots and the modification of This singular flight used the latest SBAS technology the operational manual described Establishing approval to approach both airports using the United States generically in the PBN Manual (ICAO procedures that are efficient SBAS (WAAS) at John F.