Integrated Reservoir Interpretation- Disk 2

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Reservoir Interpretation- Disk 2 Integrated Reservoir Interpretation Reservoir management, integrated data interpretation, multidisciplinary asset teams, synergy—these are the buzzwords of modern reservoir engineering. They point to the efficient use of all types of data to better understand reservoirs and to ultimately produce more hydrocarbon less expensively. But is vision outpacing the tools available? We describe how better reservoir understanding is being achieved in practice. Ed Caamano Every field is unique, and not just in its geol- disciplines work together, hopefully in close Ken Dickerman ogy. Size, geographical location, production enough harmony that each individual’s Mick Thornton history, available data, the field’s role in expertise can benefit from insight provided Conoco Indonesia Inc. overall company strategy, the nature of its by others in the team. There is plenty of Jakarta, Indonesia hydrocarbon—all these factors determine motivation for seeking this route, at any how reservoir engineers attempt to maxi- stage of a field’s development. Reservoirs Chip Corbett mize production potential. Perhaps the only are so complex and the art and science of David Douglas commonality is that decisions are ultimately characterizing them still so convoluted, that Phil Schultz based on the best interpretation of data. For the uncertainties in exploitation, from Houston, Texas, USA that task, there is a variability to match the exploration to maturity, are generally higher fields being interpreted. than most would care to admit. Roopa Gir In an oil company with separate geologi- In theory, uncertainty during the life of a Barry Nicholson cal, geophysical and reservoir engineering field goes as follows: During exploration, Jakarta, Indonesia departments, the interpretation of data tends uncertainty is highest. It diminishes as to be sequential. Each discipline contributes appraisal wells are drilled and key financial Dwi Martono and then hands over to the next discipline. decisions have to be made regarding expen- Joko Padmono At the end of the line, the reservoir engineer sive production facilities—for offshore Kiagus Novias attempts to reconcile the cumulative under- fields, these typically account for around Sigit Suroso standing of the reservoir with its actual 40% of the capital outlay during the life of Pertamina Sumbagut behavior. Isolated from the geologist and the field. As the field is developed, uncer- Brandan, North Sumatra, Indonesia geophysicist who have already made their tainty on how to most efficiently exploit it contributions, the reservoir engineer can diminishes further. By the time the field is Gilles Mathieu play with parameters such as porosity, satu- dying, reservoir engineers understand their Clamart, France ration and permeability, but is usually field perfectly. barred, because of practical difficulties, from A realistic scenario may be more like this: Zhao Yan adjusting the underlying reservoir geometry.1 During exploration, uncertainty is high. But China National Petroleum Company This scenario is giving way to the inte- during appraisal, the need for crucial deci- Beijing, China grated asset team, in which all the relevant sions may encourage tighter bounds on the reservoir’s potential than are justifiable. For help in preparation of this article, thanks to Tom In this article, ELAN (Elemental Log Analysis), Finder, Later, as the field is developed, production Bundy, Conoco Indonesia Inc., Jakarta, Indonesia; Gilles Fortress (Formation Reservoir Test System), GeoFrame, fails to match expectations, and more data, Bitoun and Rune Hope, Total Indonesie, Jakarta, Indone- Geopulse, Geoshare, GeoViz, IES (Integrated Exploration sia; Dharmawan Samsu, Arco, Jakarta, Indonesia; Bill System), LogDB, MeshBuilder, ModelBuilder, RFT for example 3D seismic data, have to be Harmony, Gerry Dyer and John Rice of Maxus, Jakarta, (Repeat Formation Tester), RM (Reservoir Modeling) TDT acquired to plug holes in the reservoir Indonesia; Ron Boulter, Beijing, China; John Bradfield, (Thermal Decay Time) and WellTie are marks of Schlum- understanding. Uncertainties begin to Abraham Baktiar and Ron Mobed, GeoQuest, Jakarta, berger; Eclipse is a mark of Intera ECL Petroleum Tech- Indonesia; Hashem Bagherpour, Mustafa Biterge, Gra- nologies; Excel is a mark of Microsoft Corporation; Sig- increase rather than diminish. They may ham Bunn, Andrew Carnegie, Metin Karakas, Bahman maView is a mark of Western Atlas; Zycor is a mark of even remain high as parts of the field Samimi, GeoQuest, Dubai, United Arab Emirates; Ben Landmark Graphics Corp. become unproducible due to water break- Lovell, Simon Robson, Steve Simson and Robert 1. For an overview of reservoir management: Sorensen, GeoQuest, Gatwick, England; Christine through and as reservoir engineers still Briggs P, Corrigan T, Fetkovich M, Gouilloud M, Lo T- Economides, Schlumberger, Houston, Texas, USA; Dou- w, Paulsson B, Saleri N, Warrender J and Weber K: struggle to fathom the field’s intricacies. glas Gray-Stephens, Schlumberger Cambridge Research, “Trends in Reservoir Management,” Oilfield Review 4, Cambridge, England. no. 1 (January 1992): 8-24. Oilfield Review 50 Lake Baikal MONGOLIA KAZAKHSTAN Karamay Zger basin Urumqi XINJIANG Kashgar Tarim basin GANSU ery, to simply estimating the reserves in a new discovery about to be exploited. QUINGHAI Whatever the scenario, the tactic of string- ing together diverse packages creates several 500 km problems. First is data compatibility. Since 0 500 Miles the industry has yet to firm up a definitive geoscience data model, each package is nXinjiang province in western China, where the RM Reservoir Modeling package has likely to accept and output data in slightly been selected for several oil fields. Since the early 1990s, China National Petroleum different ways (see “Managing Oilfield Data Company (CNPC) has placed increased emphasis on reservoir characterization to bet- Management,” page 32). This forces a cer- ter estimate field reserves and to optimize development drilling. Xinjiang province is best known for the Tarim basin, the largest basin in the world tain amount of data translation as the inter- still awaiting significant exploration. The RM package is being deployed farther north pretation moves forward—indeed, a small in the Zger basin that contains the large Karamay oil field. Three new fields have been industry has emerged to perform such trans- recently discovered here and the RM package coupled with GeoQuest seismic interpre- lation. Second, the data management system tation software played a key part in their discovery. Two of these fields are currently undergoing development drilling, and the drilling success rate has exceeded 90%. supporting this fragmented activity must somehow keep track of the interpretation as Asset teams go a long way toward maxi- For example, this could be the worksta- it evolves. Ideally, the reservoir manager mizing understanding of the reservoir and tion/package lineup for XYZ Oil Company: needs to know the history of the project, placing a realistic uncertainty on reservoir • GeoQuest’s IES Integrated Exploration who made what changes, and if necessary behavior. They are the best bet for making System for seismic interpretation how to backtrack. Third, and most impor- most sense of the available data. What they • Landmark Graphics Corp.’s Zycor map- tant, the tactic of stringing together frag- may lack, however, are the right tools. ping package for mapping mented packages discourages integrated Today, interpretation is mainly performed on • Western Atlas’ SigmaView package for interpretation. Crudely put, as the interpreta- workstations with the raw and interpreted seismic inversion tion progresses, putting things into reverse is data paraded in its full multidimensionality • Stratamodel Inc.’s package for geological always more of a hassle than continuing to on the monitor. Occasionally, hard-copy model building and 3D visualization move forward. It takes an iron will to accept output is still the preferred medium—for • GeoQuest’s GeoFrame platform for petro- that anomalous production data may mean example, logs taped to walls for correlating physical log interpretation going back to the beginning and rethinking large numbers of wells. • Intera’s PVT analysis, gridding and Eclipse the basic reservoir description. There are workstation packages for 3D simulation packages for reservoir engi- The answer to all these problems is a fully seismic interpretation, for mapping, for neering integrated package that performs most, if viewing different parts of the reservoir in • GeoQuest’s Finder package for database not all, the functionality listed above for three-dimensions, for petrophysical interpre- management XYZ Corporation, a package that is easy to tation in wells (see “Beating the Exploration • Microsoft Corporation’s Excel spreadsheet load with data and that keeps the data Schedule with Integrated Data Interpreta- program for collating data and making together in a unified format, a package that tion: Cam Oil’s Experience,” page 10), for reserve estimates. tracks the progress of the interpretation, a performing geostatistical modeling in Any number of combinations is possible. package that is easy to use, and, finally, a unsampled areas of the reservoir, for creat- The choice depends on oil company prefer- package that in its construction draws geol- ing a grid for simulation, for simulating ences, the history of the field and the prob- ogist, geophysicist, petrophysicist and reser- reservoir behavior,
Recommended publications
  • Start Time End Time Speaker Company Talk Title 09:00 09:30 Registration
    Start End Speaker Company Talk Title time time 09:00 09:30 Registration Michael 09:30 09:40 LPS Welcome & Introduction O'Keefe Kevin Independent 1 09:40 10:15 What is Advanced Formation Evaluation? Corrigan Consultant Rockflow Shaly sand evaluation in the total & effective 2 10:15 10:45 Roddy Irwin Resources LTD porosity systems: Know the difference! 10:45 11:15 Break 3 11:15 11:45 Iain Whyte Tullow Oil Resistivity in thin beds…some case studies Michel A review of low-resistivity & low-resistivity 4 11:45 12:15 Schlumberger Claverie contrast pay with focus on Africa Baker Using fractals to determine a reservoir's 5 12:15 12:45 Steve Cuddy Hughes/SPE hydrocarbon distribution 12:45 13:45 Lunch Joint Interpretation of Magnetic Resonance - and Geoff Page & Baker Hughes 6 13:45 14:30 Resistivity-based fluid volumetrics: A framework Holger Thern / SPWLA for petrophysical evaluation Richard Retired 7 14:30 15:00 The problem of the high permeability streak Dawe Consultant 15:00 15:30 Break Leicester Shale gas petrophysics; key parameters, 8 15:30 16:00 Mike Lovell University assumptions, and uncertainties Improved cased-hole formation evaluation: the Chiara 9 16:00 16:30 Schlumberger value of new fast neutron cross-section Cavelleri measurements & high definition spectroscopy Independent Getting More from Less - Using legacy data and 10 16:30 17:00 TBA Consultant sparse data sets Michael 17:00 17:10 LPS Closing Comments O'Keefe 17:10 onwards Refreshments Important notice: The statements and opinions expressed in this presentation are those of the author(s) and should not be construed as an official action or opinion of the London Petrophysical Society (LPS).
    [Show full text]
  • SPE 112246 Rapid Model Updating with Right-Time Data
    SPE 112246 Rapid Model Updating with Right-Time Data - Ensuring Models Remain Evergreen for Improved Reservoir Management Stephen J. Webb, David E. Revus, Angela M. Myhre, Roxar, Nigel H. Goodwin, K. Neil B. Dunlop, John R. Heritage, Energy Scitech Ltd. Copyright 2008, Society of Petroleum Engineers evergreen and providing the most up-to-date basis for the This paper was prepared for presentation at the 2008 SPE Intelligent Energy Conference making of important reservoir management decisions. and Exhibition held in Amsterdam, The Netherlands, 25–27 February 2008. This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents of the paper Introduction have not been reviewed by the Society of Petroleum Engineers and are subject to Since the early days of reservoir simulation, history correction by the author(s). The material does not necessarily reflect any position of the 1 Society of Petroleum Engineers, its officers, or members. Electronic reproduction, matching has been identified as one of the best methods distribution, or storage of any part of this paper without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an of validating a reservoir model’s predictive capabilities. abstract of not more than 300 words; illustrations may not be copied. The abstract must Often long periods of time have been spent adjusting the contain conspicuous acknowledgment of SPE copyright. reservoir description so that the reservoir simulator’s calculated results match the observed data from the reservoir.
    [Show full text]
  • RESERVOIR ENGINEERING for Geologists
    RESERVOIR ENGINEERING for Geologists PRINCIPAL AUTHORS Ray Mireault, P. Eng. Lisa Dean, P. Geol. CONTRIBUTING AUTHORS Nick Esho, P. Geol. Chris Kupchenko, E.I.T. Louis Mattar, P. Eng. Gary Metcalfe, P. Eng. Kamal Morad, P. Eng. Mehran Pooladi-Darvish, P. Eng. cspg.org fekete.com Reservoir Engineering for Geologists was originally published as a fourteen-part series in the CSPG Reservoir magazine between October 2007 and December 2008. TABLE OF CONTENTS Overview...................................................................................... 03 COGEH Reserve Classifications.................................................. 07 Volumetric Estimation ..................................................................11 Production Decline Analysis.........................................................15 Material Balance Analysis.............................................................19 Material Balance for Oil Reservoirs.............................................. 23 Well Test Interpretation................................................................. 26 Rate Transient Analysis................................................................ 30 Monte Carlo Simulation/Risk Assessment - Part 1...................... 34 Monte Carlo Simulation/Risk Assessment - Part 2...................... 37 Monte Carlo Simulation/Risk Assessment - Part 3 ...................... 41 Coalbed Methane Fundamentals................................................ 46 Geological Storage of CO2........................................................... 50
    [Show full text]
  • Real Time Petrophysical Data Analysis for Well Completions
    Real Time Petrophysical Data Analysis for Well Completions Installed in Oil Fields in the Amazon Basin in Ecuador Ivan Vela, Oscar Morales and Fabricio Sierra, Petroamazonas, Ecuador, and Francisco Porturas, Halliburton, Brasil. Copyright 2013, SBGf - S ociedade Brasileira de Geofísica its interpretation is a unique source of information of rock and fluid properties for a final calibration of predicted This paper was prepared f or presentati on during the 13th I nternational Congress of the Brazilian G eophysical S ociet y held in Rio de Janeiro, Brazil, A ugust 26-29, 2013. m odels , base cas es as an aid to install an efficient completion hardware. Contents of this paper were reviewed by the T echnic al Committee of the 13th International Congress of the Brazilian G eophysical Soci et y and do not nec essaril y represent any position of the SBG f, its officers or members. Electronic reproduction or Depending on the well geometry, wells are com pleted storage of any part of this paper f or commercial purpos es without the written consent of the Brazilian G eophysical Soci et y is pr ohibit ed. with a variety of completion equipment, from conventional ____________________________________________________________________________ slotted liners, to standalone screens (SAS) and only Abstract recently with ICDs and Autonomous Inflow Control Devices (AICDs) and or Interval Control Valves (ICVs), Petrophysical interpretation of Logging While Drilling usually incorporating some level of compartmentalization (LWD) data, acquired real time or later downloaded and zonal isolation with swellable packers. from memory data, is applied to estimate valuable reservoir rock and fluid properties.
    [Show full text]
  • Geo V18i2 with Covers in Place.Indd
    VOL. 18, NO. 2 – 2021 GEOSCIENCE & TECHNOLOGY EXPLAINED GEO EDUCATION Geoscientists for the Energy Transition INDUSTRY ISSUES Gas Flaring EXPLORATION Alaska Anxiously Awaits its Fate GEOPHYSICS Nimble Nodes ENERGY TRANSITION Increasing Energy While Decreasing Carbon geoexpro.com GEOExPro May 2021 1 Previous issues: www.geoexpro.com Contents Vol. 18 No. 2 This issue of GEO ExPro focuses on North GEOSCIENCE & TECHNOLOGY EXPLAINED America; New Technologies and the Future for Geoscientists. 30 West Texas! Land of longhorn cattle, 5 Editorial mesquite, and fiercely independent ranchers. It also happens to be the 6 Regional Update: The Third Growth location of an out-of-the-way desert gem, Big Bend National Park. Gary Prost Phase of the Haynesville Play takes us on a road trip and describes the 8 Licencing Update: PETRONAS geology of this beautiful area. Launches Malaysia Bid Round, 2021 48 10 A Minute to Read The effects of contourite systems on deep water 14 Cover Story: Gas Flaring sediments can be subtle or even cryptic. However, in recent years 20 Seismic Foldout: The Greater Orphan some significant discoveries and Basin the availability of high-quality regional scale seismic data, 26 Energy Transition: Critical Minerals has drawn attention to the from Petroleum Fields frequent presence of contourite dominated bedforms. 30 GEO Tourism: Big Bend Country 34 Energy Transition Update: Increasing Energy While Decreasing Carbon 36 Hot Spot: North America 52 Seismic node systems developed in the past 38 GEO Education: Geoscientists for the decade were not sufficiently compact to efficiently Energy Transition acquire dense seismic in any environment. To answer this challenge, BP, in collaboration 42 Seismic Foldout: Ultra-Long Offsets with Rosneft and Schlumberger, developed a new nimble node system, now being developed Signal a Bright Future for OBN commercially by STRYDE.
    [Show full text]
  • Reservoir Simulation-Based Modeling for Characterizing Longwall Methane Emissions and Gob Gas Venthole Production
    Reservoir simulation-based modeling for characterizing longwall methane emissions and gob gas venthole production C.O. Karacan , G.S. Esterhuizen, S.J. Schatzel, W.P. Diamond National Institute for Occupational Safety and Health (NIOSH), PiPinsburgh Research Laboratory, United States Abstract Longwall mining alters the fluid-flow-related reservoir properties of the rocks overlying and underlying an extracted panel due to fracturing and relaxation of the strata. These mining-related disturbances create new pressure depletion zones and new flow paths for gas migration and may cause unexpected or uncontrolled migration ofgas into the underground workplace. One common technique to control methane emissions in longwall mines is to drill vertical gob gas ventholes into each longwall panel to capture the methane within the overlying fractured strata before it enters the work environment. Thus, it is important to optimize the well parameters, e.g., the borehole diameter, and the length and position of the slotted casing interval relative to the hctured gas-bearing zones. This paper presents the development and results of a comprehensive, "dynamic," three-dimensional reservoir model of a typical multipanel Pittsburgh coalbed longwall mine. The alteration of permeability fields in and above the panels as a result of the mining- induced disturbances has been estimated from mechanical modeling of the overlying rock mass. Model calibration was performed through history matching the gas production &om gob gas ventholes in the study area. Results presented in this paper include a simulation of gas flow patterns from the gas-bearing zones in the overlying strata to the mine environment, as well as the influence of completion practices on optimizing gas production from gob gas ventholes.
    [Show full text]
  • Hydrocarbon Reservoir Modeling: Comparison Between Theoretical and Real Petrophysical Properties from the Namorado Field (Brazil) Case Study
    Hydrocarbon reservoir modeling: comparison between theoretical and real petrophysical properties from the Namorado Field (Brazil) case study. Hashimoto, Marcos Deguti, Student from the Master in Oil Engineering E-mail: [email protected] 1. Abstract In reservoir characterization and modeling, due to information-acquisition’s high costs, frequently only indirect measurements of the subsurface properties such as seismic reflection data is available. In the worst-case scenario, only regional geological information is at disposal. In an attempt to provide deeper insights over the study area, with low costs, modeling synthetic reservoirs has been a reliable tool to better characterize reservoir/prospects. In this work two synthetic hydrocarbons reservoirs were modelled recurring to two different approaches to characterize Earth’s subsurface petrophysical (facies, porosity and permeability) and elastic (P-wave, S-wave and density) properties. In the second half of 2013, during the IST (Instituto Superior Técnico) Internship, a synthetic reservoir was conceived and modeled using Namorado Field’s (Campos Basin, Rio de Janeiro, Brazil) as reference. During this intern public data, knowledge, papers, books and dissertations were gathered. In order to validate and certify this outcome, a new synthetic reservoir was proposed, but this time using real data for this field provided by the Brazilian Oil & Gas Agency (ANP). This dissertation addresses the comparison between the theoretical and real synthetic reservoir results, validating the first reservoir step-by-step. The major conclusion reached confirms that the theoretical synthetic reservoir outputs reliable results, however with caution in some of the modelled properties. Keywords: Hydrocarbon synthetic reservoir, Reservoir Modeling, Rock Physics Model, Petrophysical properties, Namorado Field, Campos Basin (Brazil).
    [Show full text]
  • Confirmation of Data-Driven Reservoir Modeling Using Numerical Reservoir Simulation
    Graduate Theses, Dissertations, and Problem Reports 2019 CONFIRMATION OF DATA-DRIVEN RESERVOIR MODELING USING NUMERICAL RESERVOIR SIMULATION Al Hasan Mohamed Al Haifi [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Petroleum Engineering Commons Recommended Citation Al Haifi, Al Hasan Mohamed, "CONFIRMATION OF DATA-DRIVEN RESERVOIR MODELING USING NUMERICAL RESERVOIR SIMULATION" (2019). Graduate Theses, Dissertations, and Problem Reports. 3835. https://researchrepository.wvu.edu/etd/3835 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. CONFIRMATION OF DATA-DRIVEN RESERVOIR MODELING USING NUMERICAL RESERVOIR SIMULATION Al Hasan Mohamed Mohamed Al Haifi Thesis submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements
    [Show full text]
  • Techniques for Modeling Complex Reservoirs and Advanced Wells
    TECHNIQUES FOR MODELING COMPLEX RESERVOIRS AND ADVANCED WELLS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Yuanlin Jiang December 2007 °c Copyright by Yuanlin Jiang 2008 All Rights Reserved ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Dr. Hamdi Tchelepi Principal Advisor I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Dr. Khalid Aziz Advisor I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Dr. Roland Horne Approved for the University Committee on Graduate Studies. iii Abstract The development of a general-purpose reservoir simulation framework for coupled systems of unstructured reservoir models and advanced wells is the subject of this dissertation. Stanford's General Purpose Research Simulator (GPRS) serves as the base for the new framework. In this work, we made signi¯cant contributions to GPRS, in terms of architectural design, extensibility, computational e±ciency, and new advanced well modeling capabilities. We designed and implemented a new architectural framework, in which the fa- cilities (man-made) model is treated as a separate component and promoted to the same level as the reservoir (natural) component.
    [Show full text]
  • Wireline Logging
    Petrophysics MSc Course Notes Wireline Logging 5. WIRELINE LOGGING 5.1 What is a Wireline Log A log is a continuous recording of a geophysical parameter along a borehole. GAMMA RAY (GR) Wireline logging is a conventional form of logging that employs a measurement tool 0 API UNITS 100 suspended on a cable or wire that suspends the tool and carries the data back to the 620 surface. These logs are taken between drilling episodes and at the end of drilling. Recent developments also allow some measurements to be made during drilling. The tools required to make these measurements are attached to the drill string behind the bit, and do not use a wire relying 630 instead on low band-width radio communication of data through the conductive drilling mud. Such data is called MWD (measurement while drilling) for simple drilling data, and LWD (logging while drilling) for measurements analogous 640 to conventional wireline measurements. MWD and LWD will not be covered by this course, although the logs that are produced in this way have very similar characteristics, even though they have been obtained in a completely different way. 650 Figure 5.1 shows a typical wireline log. In this case it is a log that represents the natural gamma radioactivity of a formation. Note that depth is arranged vertically in feet or metres, and the header contains the name of the log curve and the range. This example shows a single track of data. Note also that 660 no data symbols are shown on the curve. Symbols are retained to represent discrete core data by convention, while continuous measurements, such as logs, are represented by smooth curves.
    [Show full text]
  • Subsea Sampling Systems MARS Multiple Application Reinjection System Configurations
    Subsea Sampling Systems MARS multiple application reinjection system configurations APPLICATIONS Almost all technical and economic studies in the oil industry require an understanding of the reservoir ■ Production monitoring fluids. MARS* multiple application reinjection system sampling technology enables the capture of ■ Reservoir modeling and management a representative, uncontaminated sample from multiphase flow, in which the sample has the same molecules in the same proportions as the flow at the sampling point where all three phases are ■ Flow assurance in equilibrium. ■ Well intervention ■ Each phase is enriched and captured individually to collect sufficient volume of sample from ■ Subsea processing strategically chosen phase-rich sampling points. ■ EOR ■ No pressure or temperature drop should occur during sampling to maintain equilibrium BENEFITS between phases. ■ Enables representative subsea sampling ■ Each phase is captured and physically or mathematically recombined for reservoir fluids properties. throughout life of field ■ Mitigates risk and enhances flow assurance management ■ Optimizes multiphase flowmeter calibration and performance ■ Increases production and recovery rates ■ Reduces capex FEATURES ■ Flexibility for integration into subsea hardware and for various sampling applications ■ Three-phase representative sampling from multiple wells in a single dive ■ Phase detection and enrichment ■ Complete chain of custody throughout sample journey ■ Proven technology ■ Ideal solution for greenfield architecture ■ Retrofit
    [Show full text]
  • Model Petroleum Engineering Curriculum
    The SPE Model Petroleum Engineering Curriculum – What it is and what it isn’t The model petroleum engineering curriculum is intended as an aid to universities worldwide that want to start new petroleum engineering programs. It is not intended to be a “standard” curriculum, in that no petroleum engineering curriculum would have all of the course listed here. Any petroleum engineering curriculum should educate students in fundamental mathematics and science, humanities and liberal arts, engineering science, and the foundational course in petroleum engineering. Most curricula will include some more specialized petroleum engineering courses, like those listed in the model curriculum as petroleum engineering electives. No Bachelor’s of Science level degree program could include all of the courses shown in the elective list. The SPE model curriculum includes all of the educational areas needed to create a specific petroleum engineering curriculum. Every petroleum engineering curriculum in the world is unique, none are exactly the same. Many countries or regions have course requirements that do not appear anywhere else in the world. In the United States, there are significant variations in curricula, with some programs having emphases on particular areas of petroleum engineering that are different from other programs. This model curriculum can be used to construct a unique degree program for new programs, with the particular courses included based on the particular needs of that university, or that country. Model Petroleum Engineering Curriculum
    [Show full text]