High-Speed Trainssystems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eddy Current Braking in Automobiles Sarath G Nath1, Rohith Babu2, George Varghese Biju3, Ashin S4 , Dr
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 Eddy Current Braking In Automobiles Sarath G Nath1, Rohith Babu2, George Varghese Biju3, Ashin S4 , Dr. Cibu K Varghese5 1,2,3,4B Tech student, Mechanical Engineering Department Mar Athanasius college of Engineering, Kerala 5Professor, Mechanical Engineering Department, Mar Athanasius College of Engineering, Kerala ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Eddy Current Braking slows a moving object by through a stationary magnetic field (Jou et al, 2006) [8]. The creating eddy currents through electromagnetic induction changing magnetic flux induces eddy currents in the which create resistance. In normal case if the speed of the conductor and these currents dissipate energy and generate vehicle is very high, the brake does not provide that amount of drag force (Jou et al, 2006) [8]. Therefore, there are no high braking force and it will leads to skidding and wear& tear contacting elements by using this electromagnetic braking of the vehicle. Because of this drawbacks of ordinary brakes, system which will lead to reduce the wear of brake pad. This arises a simple and effective mechanism of braking system situation will also reduce the wear debris pollution into our ‘The eddy current brake’. Eddy current is one of the most environment. outstanding of electromagnetic induction phenomena. Even though it appear many technical problems because dissipative 1.1 Conventional Braking System nature it has some valuable contributions. It is a frictionless method for braking of vehicles including trains. As it is a Braking forms an important part of motion of any frictionless brake, periodic change of braking components are automobile or locomotive. -
Modeling and Design Optimization of Electromechanical Brake Actuator Using Eddy Currents
Modeling and Design Optimization of Electromechanical Brake Actuator Using Eddy Currents by Kerem Karakoc MASc, University of Victoria, 2007 BSc, Bogazici University, 2005 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Mechanical Engineering. Kerem Karakoc, 2012 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Modeling and Design Optimization of Electromechanical Brake Actuator Using Eddy Currents by Kerem Karakoc MASc, University of Victoria, 2007 BSc, Bogazici University, 2005 Supervisory Committee Dr. Afzal Suleman, Dept. of Mechanical Engineering, University of Victoria Co-Supervisor Dr. Edward Park, Dept. of Mechanical Engineering, University of Victoria Co-Supervisor Dr. Ned Djilali, Dept. of Mechanical Engineering, University of Victoria Departmental Member Dr. Issa Traore, Dept. of Electrical and Computer Engineering, University of Victoria Outside Member iii Supervisory Committee Dr. Afzal Suleman, Dept. of Mechanical Engineering, University of Victoria Co-Supervisor Dr. Edward Park, Dept. of Mechanical Engineering, University of Victoria Co-Supervisor Dr. Ned Djilali, Dept. of Mechanical Engineering, University of Victoria Departmental Member Dr. Issa Traore, Dept. of Electrical and Computer Engineering, University of Victoria Outside Member Abstract A novel electromechanical brake (EMB) based on the eddy current principle is proposed for application in electrical vehicles. The proposed solution is a feasible replacement for the current conventional hydraulic brake (CHB) systems. Unlike CHBs, eddy current brakes (ECBs) use eddy currents and their interaction with an externally applied magnetic field to generate braking torque. -
Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses
aerospace Article Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses Yi Zhang †, Qiang Shen †, Liqiang Hou † and Shufan Wu * School of Aeronautics and Astronautics, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang District, Shanghai 200240, China; [email protected] (Y.Z.); [email protected] (Q.S.); [email protected] (L.H.) * Correspondence: [email protected]; Tel.: +86-34208597 † These authors contributed equally to this work. Abstract: The safety of on-orbit satellites is threatened by space debris with large residual angular velocity and the space debris removal is becoming more challenging than before. This paper explores the non-contact despinning and traction problem of high-speed rotating targets and proposes an eddy current brake and traction technology for space targets without any propellant consumption. The principle of the conventional eddy current brake is analyzed in this article and the concept of eddy current brake and traction without propellant is put forward for the first time. Secondly, according to the key technical requirements, a brand-new structure of a satellite generating artificial magnetic field is designed accordingly. Then the control mechanism of eddy current brake and traction without propellant is analyzed qualitatively by simplifying the model and conditions. Then, the magnetic pulse control method is proposed and analyzed quantitatively. Finally, the feasibility of the technology is verified by the numerical simulation method. According to the simulation results, the eddy current brake and traction technology based on magnetic pulses can make the angular speed of target decrease linearly without propellant during the process. -
For Safe Mobility Worldwide. 2 Rail Vehicle Systems
Knorr-Bremse RAIL VEHICLE SYSTEMS For safe mobility worldwide. 2 RAIL VEHICLE SYSTEMS EVERY DAY, MORE THAN 1,000,000,000 PEOPLE AROUND THE WORLD RELY ON SYSTEMS FROM KNORR-BREMSE. DURING AN EMERGENCY STOP, THE BRAKES OF A HIGH-SPEED TRAIN REACH TEMPERATURES OF MORE THAN CELSIUS. 800 DEGREES LAST YEAR KNORR-BREMSE USED SOME 7,000,000 SINTERED METAL ELEMENTS FOR ITS FRICTION PRODUCTS. KNORR-BREMSE HAS PRODUCED SOME 1,100,000 KE VALVES SINCE THEY WERE FIRST MARKETED. THE KAB60 CONTROL VALVE CAN FUNCTION AT TEMPERATURES AS LOW AS CELSIUS. -60 DEGREES EVERY DAY, ALL OVER THE WORLD, OUR IFE ENTRANCE SYSTEMS OPEN AND CLOSE MORE THAN 50,000,000 TIMES. 3 “Under the motto of ‘Local Thinking. Worldwide’ Knorr-Bremse ventured into international markets early on. It has been a real success story.” Peter Karius, Director International Sales, Knorr-Bremse Rail Vehicle Systems 4 RAIL VEHICLE THE GROUP SYSTEMS Knorr-Bremse: FOR SAFE MOBILITY WORLDWIDE The development of the Knorr-Bremse Group from the company’s early days in 1905 to its current position as a world leader is a fascinating and gripping story. But from the very outset, the company was – and still is – driven by an absolute commitment to safety on road and rail. After initially focusing on manufacturing, selling and servicing braking systems, it eventually developed into a global group offering complete systems for rail and commercial vehicles. At Knorr-Bremse we see ourselves as the service partner of choice for customers all over the world – which is why we develop innovative solutions for road and rail vehicles’ entire life cycle. -
Effective Eddy Current Braking at Low and High Vehicular Speeds – a Simulation Study
Archives of Current Research International 8(4): 1-11, 2017; Article no.ACRI.34042 ISSN: 2454-7077 Effective Eddy Current Braking at Low and High Vehicular Speeds – A Simulation Study Alumona Louis Olisaeloka 1* , Azaka Onyemazuwa Andrew 2 and Nwadike Emmauel Chinagorom 2 1Department of Electrical Engineering, Nnamdi Azikiwe University, Awka, Nigeria. 2Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria. Author’s contributions This work was carried out in collaboration between all authors. Author ALO designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors AOA and NEC managed the analyses of the study. Author NEC managed the literature searches. All authors read and approved the final manuscript. Article Information DOI: 10.9734/ACRI/2017/34042 Editor(s): (1) Preecha Yupapin, Department of Physics, King Mongkut’s Institute of Technology Ladkrabang, Thailand. (2) M. A. Elbagermi, Chemistry Department, Misurata University, Libya. (3) Alexandre Gonçalves Pinheiro, Physics, Ceara State University, Brazil. Reviewers: (1) Meshack Hawi, Jomo Kenyatta University of Agriculture and Technology, Kenya. (2) Mohamed Zaher, University of Illinois at Chicago, USA. Complete Peer review History: http://www.sciencedomain.org/review-history/20351 Received 10 th May 2017 Accepted 16 th July 2017 Original Research Article th Published 4 August 2017 ABSTRACT Conventional eddy current braking is limited in effectiveness to only the high vehicular speed region. As the vehicle slows, the conventional eddy current brake loses effectiveness. This inherent drawback is due to the use of static/stationary magnetic field in the brake system. This study presents a solution - the use of rotating magnetic field in the brake system. -
Conceptualization of a New Product Development Framework for Eddy Current Braking Systems for Heavy Vehicles in Zimbabwe
Proceedings of the 2017 International Conference on Industrial Engineering and Operations Management (IEOM) Bristol, UK, July 24-25, 2017 Conceptualization of a New Product Development Framework for Eddy Current Braking Systems for Heavy Vehicles in Zimbabwe Wilson R. Nyemba Department of Mechanical Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa [email protected] Chris Pote, Tauyanashe Chikuku Department of Mechanical Engineering, University of Zimbabwe, P O Box MP 167, Mount Pleasant, Harare, Zimbabwe [email protected], [email protected] Charles Mbohwa Professor of Sustainability Engineering, Department of Quality and Operations Management & Vice Dean for Research and Innovation, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa [email protected] Abstract One of the most critical requirements for safety in vehicles is the availability of reliable braking systems. Most heavy vehicles in Zimbabwe employ the conventional hydraulic braking system. However changes and improvements in technology have seen the introduction of retarders that make use of magnets and eddy currents. The new technology is friction free but still deemed expensive and thus not yet readily acceptable to vehicle manufacturers for fears of reliability and cost. Hydraulic brakes are equally expensive in the long run owing to maintenance and frequent replacement of brake pads and rotors, particularly in Zimbabwe where the road infrastructure has deteriorated significantly over the years. A case study was carried out at a Zimbabwean company which specializes in the sales, service and backup of Scania heavy vehicles, with a special focus on the braking systems. -
Eddy Current Brake Eddy Current Brake (Order Code DTS-ECB) (Order Code DTS-ECB)
Eddy Current Brake Eddy Current Brake (Order Code DTS-ECB) (Order Code DTS-ECB) The Eddy Current Brake is a braking mechanism for use with our Dynamics Cart The Eddy Current Brake is a braking mechanism for use with our Dynamics Cart and Track System (order code DTS) carts and and Track System (order code DTS) carts and Go Direct® Sensor Cart (order code GDX-CART). Go Direct® Sensor Cart (order code GDX-CART). As the cart moves over the track, the magnets in the Eddy Current Brake create an As the cart moves over the track, the magnets in the Eddy Current Brake create an electromagnetic drag on the cart that is proportional to the cart’s speed. electromagnetic drag on the cart that is proportional to the cart’s speed. The Eddy Current Brake is not compatible with older metal carts that were part of The Eddy Current Brake is not compatible with older metal carts that were part of the discontinued Vernier Dynamics Systems (order code VDS) sold from 2005 to the discontinued Vernier Dynamics Systems (order code VDS) sold from 2005 to 2012. 2012. Assembly Assembly Insert the desired number of magnets into the Eddy Current Brake. Insert the desired number of magnets into the Eddy Current Brake. The Eddy Current Brake connectors swivel to allow 4 mm of height adjustment The Eddy Current Brake connectors swivel to allow 4 mm of height adjustment when installed in a cart. when installed in a cart. When the DTS stamp on the connector is upright, it is set at the correct height for When the DTS stamp on the connector is upright, it is set at the correct height for our DTS carts. -
Air Brake & Train Handling Rules
Air Brake & Train Handling Rules Effective March 25, 2019 AIR BRAKE & TRAIN HANDLING RULES TABLE OF CONTENTS 100.0 Train Air Brake Tests and Inspections 5 100.1 Compliance with FRA and Transport Canada Regulations 5 100.2 Safety Inspection of Freight Cars 5 100.3 Coupling and Securing Air Hoses 6 100.4 Operative Brakes - US Only 6 100.5 Person in Charge of Air Brake Test 7 100.6 Standard Brake Pipe Pressures 7 100.7 Charging Air Brake System 7 100.8 Air Brake Tests Using End-of-Train Telemetry Devices (ETD) Continuity Tests 7 100.8.1 Air Brake Tests Using Handheld Gauges 8 100.9 Brake Pipe Leakage Test 8 100.10 Initial Terminal and Road Air Brake Test (Class 1 Air Brake Test) Canadian Class 1 Brake Test and Class 1-A Brake Tests 9 100.11 Transfer Train Movements Test – United States 12 100.12 Transfer Movements – Canada 13 100.13 Running Air Brake Test 13 100.14 Air Brake Test When Cutting Off and Recoupling 14 100.15 Application and Release Test (Class 3 Air Brake Test) United States and Canada 14 100.16 Air Brake Test When Adding Pre-Tested Cars 14 100.17 Inbound Train Inspection 14 100.18 Piston Travel Limits 15 100.19 Dynamic Brake Requirements 15 100.20 Inoperative Dynamic Brake on Lead, Controlling Locomotive 15 101.0 Locomotive Air Brake Tests and Inspections 16 101.1 General Requirements 16 101.2 Locomotive Daily Inspection 16 101.3 Defects Other Than Non-Complying Conditions 20 101.4 Non-Complying Condition Found En Route 21 101.5 Major Internal Defects Found En Route 21 101.6 Locomotive Air Brake Test 22 101.7 Standard Air Pressures -
Part 2: Speeding-Up Conventional Lines and Shinkansen Asahi Mochizuki
Breakthrough in Japanese Railways 9 JRTR Speed-up Story 2 Part 2: Speeding-up Conventional Lines and Shinkansen Asahi Mochizuki Reducing Journey Times on is limited by factors such as curves, grades, and turnouts, so Conventional Lines scheduled speed can only be increased by focusing effort on increasing speed at these locations. Distribution of factors limiting speed Many of the intercity railways in Japan are lines in The maximum speed of any line is determined by emergency mountainous areas. So, objectives for increasing speeds braking distance. However, train speeds are also restricted by cannot be achieved by simply raising the maximum speed. various other factors, such as curves, grades, and turnouts. Acceleration and deceleration performance also impact Speed-up on curves journey time. The impact of each element depends on the The basic measures for increasing speeds on curves are terrain of the line. The following graphs show the distributions lowering the centre of gravity of rolling stock and canting the of these elements for the Joban Line, crossing relatively flat track. However, these measures have already been applied land, and for the eastern section of the Chuo Line, running fully; cant cannot be increased on lines serving slow freight through mountains. trains with a high centre of gravity. Conversely, increasing The graph for the Joban Line crossing the flat Kanto passenger train speed through curves to just below the limit Plain shows that it runs at the maximum speed of 120 km/h where the trains could overturn causes reduced ride comfort (M part) for about half the journey time. -
Mine Hoist Disc Brake Systems Improved Safety, Availability and Productivity 2 MINE HOIST DISC BRAKE SYSTEMS IMPROVED SAFETY, AVAILABILITY and PRODUCTIVITY
— UNDERGROUND MINING Mine hoist disc brake systems Improved safety, availability and productivity 2 MINE HOIST DISC BRAKE SYSTEMS IMPROVED SAFETY, AVAILABILITY AND PRODUCTIVITY — Mine hoist disc brake systems Overview ABB has been supplying electrical equipment for mine hoists for over 100 years. Since 1937 ABB has also supplied mechanical equipment, where braking systems have played a vital role. — The earliest brake systems consisted of separate For modernization of mine hoists delivered by other 01 Brake system on ABB mine hoisting system service brakes and safety brakes, powered by suppliers, ABB can also supply stand-alone disc — compressed air or oil pressure. Over the years brake system packages. These packages can then 02 Brake stands ABB brake systems have undergone numerous be integrated into the existing mine hoist control significant developments. system. Today’s state-of-the-art technology for mine hoist Brake requirements and functionality brake systems is based on hydraulically operated Normal retardation of a hoist from full speed to disc brakes. ABB started this development in 1962 stop is accomplished electrically with the motor and and has many years of experience in applying this hoist control system. The hydraulic brake system technology to mine hoist systems. ABB’s many generally functions as a parking brake at still stand. developments and features on mine hoist disc brake systems have greatly improved the safety, However, in case of loss of motor power, overspeed, availability and productivity of mine hoist systems. over travel or any other emergency situation, the braking system serves as the ultimate means Currently, many older mine hoists still use the for safely bringing the hoist to a full stop with the originally supplied brake system. -
Evaluation of Brake Parameters in Copper Discs of Various Thicknesses and Speeds Using Neodymium – Iron – Boron Magnets
MATEC Web of Conferences 144, 01003 (2018) https://doi.org/10.1051/matecconf/201814401003 RiMES 2017 Evaluation of brake parameters in copper discs of various thicknesses and speeds using Neodymium – Iron – Boron Magnets G. L. Anantha Krishna1 and K. M. Sathish Kumar1* 1Department of Mechanical Engineering, BMS Institute of Technology & Management, Bengaluru, 560064, India Abstract. Neodymium – Iron – Boron (NdFeB) permanent magnets of 12.5 mm thickness and 50 mm diameter are chosen for analyses because of their higher remanence and coercivity. Experimental analyses were carried out with Copper discs of thickness 4 mm, 6 mm and 8 mm at 2000 rpm, 3000 rpm, 4000 rpm and 5000 rpm. Experiments were conducted with three different positions of magnets such as 2 coaxial magnets, single magnet and single magnet with sudden application conditions. The brake parameters recorded are % speed reduction, deceleration and time taken. In 2 coaxial magnets condition, brake parameters are better in 6 mm thick disc. In single magnet condition, the brake parameters in 6 mm thick disc are found to be more consistent than 4 mm and 8 mm thick discs. In single magnet with sudden application condition, in 4 mm thick disc, the brake parameters are found better. During analysis, very high repulsion was experienced by magnet with 8 mm thick Copper disc at all the above mentioned speeds in single magnet with sudden application condition. For high speed train applications, single magnet condition with 6mm thick disc may be suitable. For high speed automotive applications, single magnet with sudden application condition with 4 mm thick disc may be suitable. -
Recovering Railroad Diesel-Electric Locomotive Dynamic Brake Energy
RECOVERING RAILROAD DIESEL-ELECTRIC LOCOMOTIVE DYNAMIC BRAKE ENERGY BY TRAVIS D. PAINTER B.S., University of Illinois at Urbana-Champaign, 2004 THESIS Submitted in partial fulfillment for the requirements for the degree of Master of Science in Civil Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2006 Urbana, Illinois ii ABSTRACT RECOVERING RAILROAD DIESEL-ELECTRIC LOCOMOTIVE DYNAMIC BRAKE ENERGY Travis D. Painter, M.S. Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign Christopher P.L. Barkan, Ph.D., Advisor As fuel costs and environmental impacts assume greater importance to railways, so does the importance of options for increased energy efficiency and emissions reduction. A study was conducted on the potential recovery of dynamic brake energy from diesel-electric locomotives in North American freight service. If feasible, such as system could conserve fuel and reduce the environmental impact of railway operations. Using computer simulations (Train Energy Model) and locomotive event recorder data, estimations were made of the energy that could be recovered from dynamic brake use. In addition, the differences between the results of the computer simulations with respect to the actual events recorded were examined in order to evaluate how well the model simulates an engineer's operation of locomotives and provide guidance for future improvements to the simulation model. A case study of the energy recovery potential for a Class 1 railroad operating on an 81-mile route over a major mountain pass in North America was conducted. The route analyzed has two characteristics that make it a good candidate for studying energy recovery potential and possible pollution prevention benefits.