Sieve-Textured Plagioclase in Volcanic Rocks Produced by Rapid

Total Page:16

File Type:pdf, Size:1020Kb

Sieve-Textured Plagioclase in Volcanic Rocks Produced by Rapid American Mineralogist, Volume 77, pages 1242-1249, 1992 Sieve-texturedplagioclase in volcanic rocks producedby rapid decompression SrnpHnN T. NBr,soN, Anr MoNrANrA.* Department of Earth and SpaceSciences, UCLA, Los Angeles,California 90024-1567,U.S.A. Ansrnlcr Disequilibrium textures,particularly the coarsesieve texture ofplagioclase,are common in orogenic volcanic rocks. The textures are usually interpreted as resulting from magma mixing, but they may occur by rapid decompression,where heat loss is minor relative to the ascent rate. We conducted high-pressurepiston-cylinder experiments on an andesite to test this hypothesis. Experiments starting at 12 kbar, followed by isothermal pressure releasein increments of 2, 4, and 6 kbar, produce sieve textures in plagioclasevery much like those in many volcanic rocks. Therefore, the presenceof sieve-texturedplagioclase should not be taken as a priori evidencefor magma mixing. Many volcanic systemsprob- ably experienceconditions of decompressionsimilar to those simulated in this study, and decompressionis considered to be a simple mechanism to produce such textures, as it requires no addition of heat or mass. Rapid decompressionmay also operate in conjunc- tion with magmamixing. INrnonucrroN One interpretation of coarse sieve textures similar to Plagioclasecommonly exhibits a variety of disequilib- those in Figure I is rapid skeletal growth resulting from rium textures in volcanic rocks, especially in orogenic undercooling(Kuo and Kirkpatrick, 1982).However, melt andesites.These textures often include combinations of inclusions are commonly elongateparallel to, or abutted complex zoning patterns and resorption features in pla- against, polysynthetic twin planes (Fig. l), or they cut gioclasethat record changingphysical conditions in mag- boundaries betweenindividual crystals in glomerocrysts. matic systems.Thus, the potential exists to learn much Given that glomerocrystsand polysynthetic twin planes about magmatic processesinvolved in their formation if form after crystallization (Dungan and Rhodes, 1978), the textures can be interpreted, with the caveat that er- the cross-cuttingrelationships indicate that thesetextures roneous inferencesmay result if a particular texture can must form by resorption rather than rapid crystallization. arise through more than one process. This study deals Two other mechanismshave been proposedto explain with the origin ofcoarse sieve-texturedvolcanic plagro- the origin of sieve textures in plagioclasefrom volcanic clase (Fig. l) in the light of new experimental observa- rocks. They are magma mixing (e.g.,Dungan and Rhodes, tions and petrographiccharacteristics of resorbednatural 1978;Tsuchiyama, 1985) and magmaticdecompression plagioclase. (e.g.,Vance, 1965; Stormet 1972; Nelson, 1989). The We interpret the texture of the plagioclasein Figure I possible effectsof magma mixing have been experimen- as representingthe remnants of an interconnecting net- tally investigated, although only under a limited set of work ofchannels, developedas the crystal underwent dis- conditions (Tsuchiyama,1985). To date, these experi- solution in responseto physical and chemical changesin ments have not produced textures like those in Figure l, the magma reservoir or conduit. Initially, dissolution al- although future experiments may produce them if they lowed diffusive and convective communication of the liq- are carried out under an expanded range of pressures, uid in the channelswith the bulk of the melt. However, temperatures, and compositions. Many studies have in many volcanic rocks, sieve-textured plagioclasehas shown the widespreadoccurrence of magma mixing as a euhedral rims that may result from subsequentcrystal petrogeneticprocess, and it is not our intent to dispute growth in responseto loss of volatiles or cooling prior to its importance. However, our results indicate that coarse eruption. If the rims encapsulatethe crystal, this may sieve textures may result from the rapid ascent of mag- leave the resorbed plagioclasewith entrained liquid in- mas; therefore,invoking magma mixing solely on the ba- clusions that have no obvious means of communication sis of coarsesieve-textured plagioclase may not be war- with the bulk of the magma. Upon extrusion, quenching ranted. In the absence of other criteria indicative of of the magma leavesthe network of channelsfilled with magma mixing, such as trapped liquid enclaves,disequi- microcrystalline or glassymelt inclusions. librium phenocryst assemblages(e.g., Mg-rich olivine + quartz),or other chemical and isotopic criteria, magmatic decompressionis a geologicallysimpler model, as it does * Presentaddress: P.O. Box I139, Pecos,New Mexico 87552, not require an open system.However, the two processes U.S.A. need not be mutually exclusive.Both mechanismsdesta- 0003-004x/9 2 / | 1| 2-r 242SO2.OO 1242 NELSON AND MONTANA: SIEVE-TEXTURED PLAGIOCLASE t243 bilize relatively sodic plagioclase,and all magmasdecom- pressduring ascent. Magma mixing Some of the relative merits of magma mixing and mag- matic decompressionmodels can be evaluated by a re- view of pertinent phaseequilibria and experimental stud- ies. Tsuchiyama's experiments model a mafic magma mixing with a more silicic, sodic plagioclase-bearingmelt, which superheatsand destabilizes the sodic plagioclase (Tsuchiyama,1985). Any calcicplagioclase in the mafic a,'a i magma would be supercooled,leaving a compositionally bimodal population of plagioclasecrystals. Mixing experimentsproduced dusty calcic mantles sur- rounding sodic cores(see Fig. 2 of Tsuchiyama, 1985), an effect produced by diffusional exchangebetween pla- f,n gioclaseand melt, assistedby the development of micro- a channelsin the partially resorbingmantle. However, Tsu- chiyama noted that his resultsdid not produce the coarse sieve textures seenin Figure l, which are similar to tex- tures ascribed to magma mixing (see Fig. 5 of Dungan and Rhodes, 1978).Although it is apparentthat some disequilibrium texturesin lavas may result from the mix- ing of magmas, it seemsthat coarse sieve textures may also form by decompression. Magrnatic decompression Plagioclasephase equilibria provide a framework for predicting the possible effectsof rapid magmatic decom- pression and for designing experiments to model it. In Fig. 1. Photomicrographof the startingmaterial containing Figure 2a, decompressionof the bulk composition, rep- large resorbedplagioclase phenocrysts typical of many inter- resented by the filled squares,from A to B drives the mediateand mafic lavas. Arrow indicatesa memberof a second systemtoward a more calcic plagioclasecomposition and populationof euhedral,often more calcic,plagioclase mrcro- a greater proportion of liquid, as representedby the rel- phenocrysts. ative lengths of the tie lines connecting A and B to the solidi and liquidi. Our experiments were designed to mimic this effect and to test whether rapid decompres- of diopside(Wyllie, 1963).Thus, additional components sion can produce resorption in volcanic plagioclasephe- and crystallizing phasesin natural systemsmay enhance nocrysts. The vigor with which a decompressingplagio- resorption effectscaused by decompression.Our experi- clase-bearingsystem begins to reequilibratedepends upon mental data and thoseof Meen (1987)confirm that, un- the magnitude and rate of pressurerelease. Decompres- der nearly isothermal conditions, increasingpressure de- sion experiments modeled ascent rates >10 m/s (d.P/dt creasesthe An content of plagioclasein multicomponent > 0.2 kbar/min) over absolutepressure intervals of 2,4, natural systems(Fig. 3). This agreeswith the observations and 6 kbar. of other workers(Green and Ringwood, 1967, 1968;Co- The compositional changesproduced by decompres- hen et al., 1967) and supports our model for decompres- sion in the binary system(Fig. 2a) are not large.However, sion-induced dissolution of plagioclasephenocrysts. the effects of additional components in decompressing Although the curves in Figure 2 are for dry systems, systemscan be evaluated in Figure 2b. The curves rep- no magma is strictly anhydrous, making it necessaryto resent the plagioclaseloop with coprecipitating diopside evaluate briefly the effectsof volatiles. It is necessaryto in the system Di-Ab-An. For decompressionintervals of keep in mind that the processof magmatic decompres- equal magnitude, the simultaneous dissolution of diop- sion we describeis rapid, precluding a significantincrease side produces a greater change in the equilibrium com- in volatile pressuredue to crystallization of an anhydrous position of plagioclaseand a greaterproportion of liquid assemblage.Therefore, it is important to consider:(l) the at the final pressurethan in the system Ab-An (Fig. 2a). effects of decompression on vapor-undersaturated sys- The increased sensitivity of the system Di-Ab-An to tems, (2) the effectsof decompressionon vapor-saturated changesin pressureand temperatureresults from the low- systems,and (3) volatile loss. er slopesof the plagioclaseliquidus and solidus in both HrO lowers the temperatureof the liquidi and especial- P-X and T-X projections causedby the coprecipitation ly the solidi, but it does not significantly changethe over- 1244 NELSON AND MONTANA: SIEVE-TEXTURED PLAGIOCLASE IGL tr PL+CL tr PL+CPX+GL O PL+I,IT+GL (! Plagioclase + Liquid : l.i PL+CPX+L th th J H qJ 10 ti F< U) 1 atm a l-i 20 oC T = 1230 15 Plagioclase+ Diopside 1100 1200 1300 H Temperature('C) 10 Plagioclase+ Diopside+Liquitl Fig.3. P-Tprojectionfor andesitemelts modified from
Recommended publications
  • Module 7 Igneous Rocks IGNEOUS ROCKS
    Module 7 Igneous Rocks IGNEOUS ROCKS ▪ Igneous Rocks form by crystallization of molten rock material IGNEOUS ROCKS ▪ Igneous Rocks form by crystallization of molten rock material ▪ Molten rock material below Earth’s surface is called magma ▪ Molten rock material erupted above Earth’s surface is called lava ▪ The name changes because the composition of the molten material changes as it is erupted due to escape of volatile gases Rocks Cycle Consolidation Crystallization Rock Forming Minerals 1200ºC Olivine High Ca-rich Pyroxene Ca-Na-rich Amphibole Intermediate Na-Ca-rich Continuous branch Continuous Discontinuous branch Discontinuous Biotite Na-rich Plagioclase feldspar of liquid increases liquid of 2 Temperature decreases Temperature SiO Low K-feldspar Muscovite Quartz 700ºC BOWEN’S REACTION SERIES Rock Forming Minerals Olivine Ca-rich Pyroxene Ca-Na-rich Amphibole Na-Ca-rich Continuous branch Continuous Discontinuous branch Discontinuous Biotite Na-rich Plagioclase feldspar K-feldspar Muscovite Quartz BOWEN’S REACTION SERIES Rock Forming Minerals High Temperature Mineral Suite Olivine • Isolated Tetrahedra Structure • Iron, magnesium, silicon, oxygen • Bowen’s Discontinuous Series Augite • Single Chain Structure (Pyroxene) • Iron, magnesium, calcium, silicon, aluminium, oxygen • Bowen’s Discontinuos Series Calcium Feldspar • Framework Silicate Structure (Plagioclase) • Calcium, silicon, aluminium, oxygen • Bowen’s Continuous Series Rock Forming Minerals Intermediate Temperature Mineral Suite Hornblende • Double Chain Structure (Amphibole)
    [Show full text]
  • Lab 2: Silicate Minerals
    GEOLOGY 640: Geology through Global Arts and Artifacts LAB 2: SILICATE MINERALS FRAMEWORK SILICATES The framework silicates quartz and feldspar are the most common minerals in Earth’s crust. Quartz (SiO 2) is one of the few common minerals that is harder than a streak plate. It may display numerous colors (purple= amethyst ; pink= rose quartz ; brown= smoky quartz ; yellow-orange= citrine ). It may form long hexagonal crystals but lacks cleavage, and instead breaks along irregular, curving surfaces (conchoidal fracture). In many cases quartz forms masses of microscopic crystals (e.g., chert, flint, chalcedony ) that still maintain the hardness and conchoidal fracture of quartz. Banded chalcedony is called agate , whereas reddish chalcedony is called carnelian (bloodstone). Plagioclase is a group of feldspar minerals that have complete solid solution from NaAlSi 3O8 ( albite ) to CaAl 2Si 2O8 ( anorthite ). Na-rich plagioclase tends to white in hands sample, whereas Ca-rich plagioclase tends to be dark grey. Twinning is the intergrowth of two or more crystals in a symmetrical fashion by the sharing of lattice points in adjacent crystals. In plagioclase, the most common twins are planar and repeated (polysynthetic twinning), resulting in the striations that are characteristic of plagioclase in hand-sample. Twinning tends to be better developed in Ca-plagioclase minerals. Ca-rich plagioclase (labradorite and anorthite) may also display iridescent colors (mostly blue). Iridescent albite is rare and is known as the semi-precious gem moonstone . Microcline (KAlSi 3O8) is the most common alkali feldspar. It is similar to plagioclase in most of its optical properties (hard, blocky, 2 cleavages at 90°).
    [Show full text]
  • Plagioclase Peridotite Or Olivine- Plagioclase Assemblage In
    Plagioclase peridotite or olivine- plagioclase assemblage in orogenic peridotites: its implications on high-temperature decompression of the subcontinental lithosphere- asthenosphere boundary zone K. Ozawa, Univ. Tokyo; C. J. Garrido, Univ. Granada; K. Hidas, Univ. Granada; J-L. Bodinier, Geosciences Montpellier; T. Aoki, Univ. Tokkyo; F. Boudier, Univ. Montpellier EGU, Vienna, 6 May, 2020 1 What we did in this study. • We have examined four orogenic peridotite complexes, Ronda, Pyrenees, Lanzo, and Horoman, to clarify the extent of shallow thermal processing based on olivine-plagioclase assemblage in plagioclase lherzolite. • The key approach of this study is to look at textural relationships between olivine and plagioclase, whose scale and mode of occurrence provide extent and strength of thermal processing in the shallow upper mantle and thus asthenosphere activity related to the exhumation of lithospheric mantle. 2 Plagioclase lherzolite proxy for dynamics of LAB • Plagioclase (pl) -olivine (ol) assemblage in fertile system is not stable even at the depth of the upper most subcontinental lithospheric mantle (SCLM ) because ….. (1) The common crustal thickness in normal non-cratonic SCLM is ~35km. (2) The Moho temperature for the mean steady-state continental geotherm is much lower than 600°C. (3) The upper stability limit of plagioclase (plagioclase to spinel facies transition) becomes shallower with decrease in temperature. (4) Kinetic barrier for subsolidus reactions in the peridotite system becomes enormous at temperatures below
    [Show full text]
  • SILICATES MINERALS Sarah Lambart
    quartz CHAPTER 8: muscovite SILICATES MINERALS Sarah Lambart olivine epidote beryl amphibole CONTENT CHAPT. 8 (6 LECTURES) Part 1: Orthosilicates (= nesosilicates) Part 2: Sorosilicates & Cyclosilicates Part 3: Chain silicates (= inosilicates) Part 4: Sheet silicates (= Phyllosilicates) Part 5: Framework silicates (= tectosilicates) CLASSIFICATION: STRUCTURAL Why? 1) Silicates have various forms (needles, flakes, cube,…) 4- due to the arrangement of the SiO4 tetrahedra 2) Tetrahedra link via cations: nature of the cation depends on the arrangement of the tetrahedra Nature of the cation: controls some of the physical properties (Ex.: color, density) MAFIC VERSUS FELSIC Mafic silicate: major cation: Mg and Fe (mafic: magnesia; “ferrum”) Ex.: biotite, amphiboles, pyroxenes, olivine Felsic silicates: lack of Fe or Mg as major constituents Ex.: feldspars (from which the name is derived), quartz, muscovite, feldspathoïds. IGNEOUS ROCKS Mostly silicate (O and Si: most abundant element in Earth’s crust) Silicate in igneous rocks: quartz, K-feldspar, plagioclase, muscovite, biotite, Ca-clinoamphibole (e.g.: hornblende), Ca- clinopyroxene (e.g., augite), orthopyroxene and olivine, feldspathoids (e.g., leucite, nepheline) Classification: based on modal mineralogy ↳volume of rock occupied by each mineral: obtained by “point counting” Streckheisen classification: based on modal mineralogy ↳volume of rock occupied by each mineral: obtained by “point counting” Mostly for felsic plutonic rocks because - grains in volcanic rocks are often
    [Show full text]
  • Rock and Mineral Identification for Engineers
    Rock and Mineral Identification for Engineers November 1991 r~ u.s. Department of Transportation Federal Highway Administration acid bottle 8 granite ~~_k_nife _) v / muscovite 8 magnify~in_g . lens~ 0 09<2) Some common rocks, minerals, and identification aids (see text). Rock And Mineral Identification for Engineers TABLE OF CONTENTS Introduction ................................................................................ 1 Minerals ...................................................................................... 2 Rocks ........................................................................................... 6 Mineral Identification Procedure ............................................ 8 Rock Identification Procedure ............................................... 22 Engineering Properties of Rock Types ................................. 42 Summary ................................................................................... 49 Appendix: References ............................................................. 50 FIGURES 1. Moh's Hardness Scale ......................................................... 10 2. The Mineral Chert ............................................................... 16 3. The Mineral Quartz ............................................................. 16 4. The Mineral Plagioclase ...................................................... 17 5. The Minerals Orthoclase ..................................................... 17 6. The Mineral Hornblende ...................................................
    [Show full text]
  • Lunar Cordierite-Spinel Troctolite: Igneous History, and Volatiles
    43rd Lunar and Planetary Science Conference (2012) 1196.pdf LUNAR CORDIERITE-SPINEL TROCTOLITE: IGNEOUS HISTORY, AND VOLATILES. A. H. Tre- iman1, and J. Gross2. 1Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston TX 77058 (treiman# lpi.usra.edu). 2American Museum of Natural History, Central Park West at 79th St., NY NY 10024. Marvin et al. [1] described a cordierite-bearing spinel respectively. Cordierite occurs in two textural forms. troctolite in Apollo sample 15295,101. We are reinves- In several fragments (Figs. 1a-c), it occurs as rounded tigating this sample because cordierite can contain sig- and elongate masses within plagioclase and along grain nificant volatiles (CO2, H2O), and because lunar boundaries. In one fragment cordierite appears to form spinel-rich rocks are more widespread than previously euhedra embedded in plagioclase (to 100 µm; Fig. 1d). recognized [2-4]. The cordierite contains no volatile The troctolite’s minerals are chemically homoge- load detectable by EMP – more precise analyses are in neous [1] (Table 1): olivine, Mg*=91.5, 0.10% MnO; progress. The bulk composition and textures of the cordierite, Mg*=96, 0.01% MnO; ilmenite, Mg*=38, troctolite are consistent with it being a partial melt of a 0.00% MnO; spinel, Mg*=80, Al/(Al+Cr)=0.88, spinel-rich cumulate, such as might have been gener- 0.08% MnO; and An95 plagioclase. The metal is nearly ated in a significant impact event. equimolar Fe-Ni, with ~1.5-3% molar Co [1], and Analytical Methods. BSE imagery and chemical Ni/Co ~20. By EMP, cordierite contains insignificant analyses were obtained using the SX-100 microprobes O beyond that required by stoichiometry with analyzed at the American Museum of Natural History and at cations: 0.5±0.7% wt (1σ) [5].
    [Show full text]
  • Chapter 3 Intrusive Igneous Rocks
    Chapter 3 Intrusive Igneous Rocks Learning Objectives After carefully reading this chapter, completing the exercises within it, and answering the questions at the end, you should be able to: • Describe the rock cycle and the types of processes that lead to the formation of igneous, sedimentary, and metamorphic rocks, and explain why there is an active rock cycle on Earth. • Explain the concept of partial melting and describe the geological processes that lead to melting. • Describe, in general terms, the range of chemical compositions of magmas. • Discuss the processes that take place during the cooling and crystallization of magma, and the typical order of crystallization according to the Bowen reaction series. • Explain how magma composition can be changed by fractional crystallization and partial melting of the surrounding rocks. • Apply the criteria for igneous rock classification based on mineral proportions. • Describe the origins of phaneritic, porphyritic, and pegmatitic rock textures. • Identify plutons on the basis of their morphology and their relationships to the surrounding rocks. • Explain the origin of a chilled margin. 65 Physical Geology - 2nd Edition 66 Figure 3.0.1 A fine-grained mafic dyke (dark green) intruded into a felsic dyke (pink) and into coarse diorite (grey), Quadra Island, B.C. All of these rocks are composed of more than one type of mineral. The mineral components are clearly visible in the diorite, but not in the other two rock types. A rock is a consolidated mixture of minerals. By consolidated, we mean hard and strong; real rocks don’t fall apart in your hands! A mixture of minerals implies the presence of more than one mineral grain, but not necessarily more than one type of mineral (Figure 3.0.1).
    [Show full text]
  • Silicic Volcanism on Mars Evidenced by Tridymite in High-Sio2 Sedimentary Rock at Gale Crater Richard V
    Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater Richard V. Morrisa,1, David T. Vanimanb, David F. Blakec, Ralf Gellertd, Steve J. Chiperae, Elizabeth B. Rampef, Douglas W. Minga, Shaunna M. Morrisong, Robert T. Downsg, Allan H. Treimanh, Albert S. Yeni, John P. Grotzingerj,1, Cherie N. Achillesg, Thomas F. Bristowc, Joy A. Crispi, David J. Des Maraisc, Jack D. Farmerk, Kim V. Fendrichg, Jens Frydenvangl,m, Trevor G. Graffn, John-Michael Morookiani, Edward M. Stolperj, and Susanne P. Schwenzerh,o aNASA Johnson Space Center, Houston, TX 77058; bPlanetary Science Institute, Tucson, AZ 85719; cNASA Ames Research Center, Moffitt Field, CA 94035; dDepartment of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1; eChesapeake Energy, Oklahoma City, OK 73118; fAerodyne Industries, Houston, TX 77058; gDepartment of Geosciences, University of Arizona, Tucson, AZ 85721; hLunar and Planetary Institute, Houston, TX 77058; iJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; jDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; kSchool of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287; lLos Alamos National Laboratory, Los Alamos, NM 87545; mNiels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark; nJacobs, Houston, TX 77058; and oDepartment of Environment, Earth and Ecosystems, The Open University, Milton Keynes MK7 6AA, United Kingdom Contributed by John P. Grotzinger, May 5, 2016 (sent for review March 18, 2016); reviewed by Jon Blundy, Robert M. Hazen, and Harry Y. McSween) Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 poly- (1), where three drill samples were analyzed by CheMin [Confi- morph, was detected in a drill sample of laminated mudstone (Buck- dence Hills, Mojave2, and Telegraph Peak (2)].
    [Show full text]
  • Identification Tables for Common Minerals in Thin Section
    Identification Tables for Common Minerals in Thin Section These tables provide a concise summary of the properties of a range of common minerals. Within the tables, minerals are arranged by colour so as to help with identification. If a mineral commonly has a range of colours, it will appear once for each colour. To identify an unknown mineral, start by answering the following questions: (1) What colour is the mineral? (2) What is the relief of the mineral? (3) Do you think you are looking at an igneous, metamorphic or sedimentary rock? Go to the chart, and scan the properties. Within each colour group, minerals are arranged in order of increasing refractive index (which more or less corresponds to relief). This should at once limit you to only a few minerals. By looking at the chart, see which properties might help you distinguish between the possibilities. Then, look at the mineral again, and check these further details. Notes: (i) Name: names listed here may be strict mineral names (e.g., andalusite), or group names (e.g., chlorite), or distinctive variety names (e.g., titanian augite). These tables contain a personal selection of some of the more common minerals. Remember that there are nearly 4000 minerals, although 95% of these are rare or very rare. The minerals in here probably make up 95% of medium and coarse-grained rocks in the crust. (ii) IMS: this gives a simple assessment of whether the mineral is common in igneous (I), metamorphic (M) or sedimentary (S) rocks. These are not infallible guides - in particular many igneous and metamorphic minerals can occur occasionally in sediments.
    [Show full text]
  • The Geochemistry of Tasmanian Devonian–Carboniferous Granites and Implications for the Composition of Their Source Rocks
    Mineral Resources Tasmania Tasmanian Geological Survey Tasmania DEPARTMENT of INFRASTRUCTURE, Record 2006/06 ENERGY and RESOURCES The geochemistry of Tasmanian Devonian–Carboniferous granites and implications for the composition of their source rocks by M. P. McClenaghan CONTENTS Introduction ……………………………………………………………………………… 3 Recent work ……………………………………………………………………………… 3 Field relationships and petrographic features of the granites ………………………………… 5 Western Tasmania ……………………………………………………………………… 5 Grassy, Bold Head and Sea Elephant adamellites …………………………………………… 5 Three Hummock Island Granite ………………………………………………………… 5 Housetop Batholith …………………………………………………………………… 5 Dolcoath Granite ……………………………………………………………………… 5 Meredith Batholith …………………………………………………………………… 5 Mt Bischoff porphyry dykes …………………………………………………………… 6 Birthday Granite ……………………………………………………………………… 6 Granite Tor Granite …………………………………………………………………… 6 Renison Complex ……………………………………………………………………… 6 Heemskirk Batholith …………………………………………………………………… 6 Pieman Granite ……………………………………………………………………… 7 Interview and Sandy Cape granites ……………………………………………………… 7 Grandfathers Granite ………………………………………………………………… 7 Cox Bight Granite …………………………………………………………………… 7 Eastern Tasmania ……………………………………………………………………… 7 Introduction ………………………………………………………………………… 7 Hornblende-biotite granodiorites ………………………………………………………… 9 Biotite adamellites/granites……………………………………………………………… 9 Garnet-cordierite-biotite adamellite/granites ……………………………………………… 10 Alkali-feldspar granites ………………………………………………………………… 10 Classification and geochemistry
    [Show full text]
  • Chapter 5: Lunar Minerals
    5 LUNAR MINERALS James Papike, Lawrence Taylor, and Steven Simon The lunar rocks described in the next chapter are resources from lunar materials. For terrestrial unique to the Moon. Their special characteristics— resources, mechanical separation without further especially the complete lack of water, the common processing is rarely adequate to concentrate a presence of metallic iron, and the ratios of certain potential resource to high value (placer gold deposits trace chemical elements—make it easy to distinguish are a well-known exception). However, such them from terrestrial rocks. However, the minerals separation is an essential initial step in concentrating that make up lunar rocks are (with a few notable many economic materials and, as described later exceptions) minerals that are also found on Earth. (Chapter 11), mechanical separation could be Both lunar and terrestrial rocks are made up of important in obtaining lunar resources as well. minerals. A mineral is defined as a solid chemical A mineral may have a specific, virtually unvarying compound that (1) occurs naturally; (2) has a definite composition (e.g., quartz, SiO2), or the composition chemical composition that varies either not at all or may vary in a regular manner between two or more within a specific range; (3) has a definite ordered endmember components. Most lunar and terrestrial arrangement of atoms; and (4) can be mechanically minerals are of the latter type. An example is olivine, a separated from the other minerals in the rock. Glasses mineral whose composition varies between the are solids that may have compositions similar to compounds Mg2SiO4 and Fe2SiO4.
    [Show full text]
  • Intrusive Igneous Rocks, Part 2
    GLY 4310C LAB 7 INTRUSIVE IGNEOUS ROCKS, PART 2 Granite, Alkali Feldspar Granite, Granodiorite, Quartz Monzonite, and Monzonite These intrusive (plutonic) rocks correspond to fields on diagram 2-2 of Winter. These rocks are generally richer in silica and alkali feldspar than those studied in Lab 6. More information about these rocks is included in Chapter 13 and 14 of Moorhouse. GRANITE - Intrusive igneous, plutonic. Medium to coarse-grained plutonic rock containing between 20% to 60% quartz, feldspar (the plagioclase to plagioclase plus alkali feldspar (P/A+P) ratio is between 10 to 65%), and small amounts of biotite, hornblende or other silicates. K-spar may be orthoclase and/or microcline. The plagioclase is sodic, either oligoclase or andesine. Rocks of this composition are scarce and the definition is often broadened, for example by including quartz monzonite. The alkali feldspar is commonly microcline perthite (mixture of microcline and plagioclase). In some perthites, the albite and K-feldspar are completely separated, possibly due to recrystallization. The quartz is almost always anhedral in granites. The quartz grains often contain inclusions. Biotite is usually brown or brownish green and often contains inclusions. Hornblende is dark green and pleochroitic. Biotite may form a rim around the hornblende. If pyroxene (diopside) is present, hornblende may form a rim around the pyroxene. Muscovite may occur in patches around the biotite. Many granites are foliated. The name is from the Latin granum, meaning grain. ALKALI FELDSPAR GRANITE - Intrusive igneous, plutonic. Medium to coarse-grained plutonic rock containing between 20% to 60% quartz, feldspar (the plagioclase to plagioclase plus alkali feldspar (P/A+P) ratio < 10), and small amounts of biotite, hornblende or other silicates.
    [Show full text]