Sql Commit and Rollback Example
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACS-3902 Ron Mcfadyen Slides Are Based on Chapter 5 (7Th Edition)
ACS-3902 Ron McFadyen Slides are based on chapter 5 (7th edition) (chapter 3 in 6th edition) ACS-3902 1 The Relational Data Model and Relational Database Constraints • Relational model – Ted Codd (IBM) 1970 – First commercial implementations available in early 1980s – Widely used ACS-3902 2 Relational Model Concepts • Database is a collection of relations • Implementation of relation: table comprising rows and columns • In practice a table/relation represents an entity type or relationship type (entity-relationship model … later) • At intersection of a row and column in a table there is a simple value • Row • Represents a collection of related data values • Formally called a tuple • Column names • Columns may be referred to as fields, or, formally as attributes • Values in a column are drawn from a domain of values associated with the column/field/attribute ACS-3902 3 Relational Model Concepts 7th edition Figure 5.1 ACS-3902 4 Domains • Domain – Atomic • A domain is a collection of values where each value is indivisible • Not meaningful to decompose further – Specifying a domain • Name, data type, rules – Examples • domain of department codes for UW is a list: {“ACS”, “MATH”, “ENGL”, “HIST”, etc} • domain of gender values for UW is the list (“male”, “female”) – Cardinality: number of values in a domain – Database implementation & support vary ACS-3902 5 Domain example - PostgreSQL CREATE DOMAIN posint AS integer CHECK (VALUE > 0); CREATE TABLE mytable (id posint); INSERT INTO mytable VALUES(1); -- works INSERT INTO mytable VALUES(-1); -- fails https://www.postgresql.org/docs/current/domains.html ACS-3902 6 Domain example - PostgreSQL CREATE DOMAIN domain_code_type AS character varying NOT NULL CONSTRAINT domain_code_type_check CHECK (VALUE IN ('ApprovedByAdmin', 'Unapproved', 'ApprovedByEmail')); CREATE TABLE codes__domain ( code_id integer NOT NULL, code_type domain_code_type NOT NULL, CONSTRAINT codes_domain_pk PRIMARY KEY (code_id) ) ACS-3902 7 Relation • Relation schema R – Name R and a list of attributes: • Denoted by R (A1, A2, ...,An) • E.g. -
Let's Talk About Storage & Recovery Methods for Non-Volatile Memory
Let’s Talk About Storage & Recovery Methods for Non-Volatile Memory Database Systems Joy Arulraj Andrew Pavlo Subramanya R. Dulloor [email protected] [email protected] [email protected] Carnegie Mellon University Carnegie Mellon University Intel Labs ABSTRACT of power, the DBMS must write that data to a non-volatile device, The advent of non-volatile memory (NVM) will fundamentally such as a SSD or HDD. Such devices only support slow, bulk data change the dichotomy between memory and durable storage in transfers as blocks. Contrast this with volatile DRAM, where a database management systems (DBMSs). These new NVM devices DBMS can quickly read and write a single byte from these devices, are almost as fast as DRAM, but all writes to it are potentially but all data is lost once power is lost. persistent even after power loss. Existing DBMSs are unable to take In addition, there are inherent physical limitations that prevent full advantage of this technology because their internal architectures DRAM from scaling to capacities beyond today’s levels [46]. Using are predicated on the assumption that memory is volatile. With a large amount of DRAM also consumes a lot of energy since it NVM, many of the components of legacy DBMSs are unnecessary requires periodic refreshing to preserve data even if it is not actively and will degrade the performance of data intensive applications. used. Studies have shown that DRAM consumes about 40% of the To better understand these issues, we implemented three engines overall power consumed by a server [42]. in a modular DBMS testbed that are based on different storage Although flash-based SSDs have better storage capacities and use management architectures: (1) in-place updates, (2) copy-on-write less energy than DRAM, they have other issues that make them less updates, and (3) log-structured updates. -
Not ACID, Not BASE, but SALT a Transaction Processing Perspective on Blockchains
Not ACID, not BASE, but SALT A Transaction Processing Perspective on Blockchains Stefan Tai, Jacob Eberhardt and Markus Klems Information Systems Engineering, Technische Universitat¨ Berlin fst, je, [email protected] Keywords: SALT, blockchain, decentralized, ACID, BASE, transaction processing Abstract: Traditional ACID transactions, typically supported by relational database management systems, emphasize database consistency. BASE provides a model that trades some consistency for availability, and is typically favored by cloud systems and NoSQL data stores. With the increasing popularity of blockchain technology, another alternative to both ACID and BASE is introduced: SALT. In this keynote paper, we present SALT as a model to explain blockchains and their use in application architecture. We take both, a transaction and a transaction processing systems perspective on the SALT model. From a transactions perspective, SALT is about Sequential, Agreed-on, Ledgered, and Tamper-resistant transaction processing. From a systems perspec- tive, SALT is about decentralized transaction processing systems being Symmetric, Admin-free, Ledgered and Time-consensual. We discuss the importance of these dual perspectives, both, when comparing SALT with ACID and BASE, and when engineering blockchain-based applications. We expect the next-generation of decentralized transactional applications to leverage combinations of all three transaction models. 1 INTRODUCTION against. Using the admittedly contrived acronym of SALT, we characterize blockchain-based transactions There is a common belief that blockchains have the – from a transactions perspective – as Sequential, potential to fundamentally disrupt entire industries. Agreed, Ledgered, and Tamper-resistant, and – from Whether we are talking about financial services, the a systems perspective – as Symmetric, Admin-free, sharing economy, the Internet of Things, or future en- Ledgered, and Time-consensual. -
Data Analysis Expressions (DAX) in Powerpivot for Excel 2010
Data Analysis Expressions (DAX) In PowerPivot for Excel 2010 A. Table of Contents B. Executive Summary ............................................................................................................................... 3 C. Background ........................................................................................................................................... 4 1. PowerPivot ...............................................................................................................................................4 2. PowerPivot for Excel ................................................................................................................................5 3. Samples – Contoso Database ...................................................................................................................8 D. Data Analysis Expressions (DAX) – The Basics ...................................................................................... 9 1. DAX Goals .................................................................................................................................................9 2. DAX Calculations - Calculated Columns and Measures ...........................................................................9 3. DAX Syntax ............................................................................................................................................ 13 4. DAX uses PowerPivot data types ......................................................................................................... -
Failures in DBMS
Chapter 11 Database Recovery 1 Failures in DBMS Two common kinds of failures StSystem filfailure (t)(e.g. power outage) ‒ affects all transactions currently in progress but does not physically damage the data (soft crash) Media failures (e.g. Head crash on the disk) ‒ damagg()e to the database (hard crash) ‒ need backup data Recoveryyp scheme responsible for handling failures and restoring database to consistent state 2 Recovery Recovering the database itself Recovery algorithm has two parts ‒ Actions taken during normal operation to ensure system can recover from failure (e.g., backup, log file) ‒ Actions taken after a failure to restore database to consistent state We will discuss (briefly) ‒ Transactions/Transaction recovery ‒ System Recovery 3 Transactions A database is updated by processing transactions that result in changes to one or more records. A user’s program may carry out many operations on the data retrieved from the database, but the DBMS is only concerned with data read/written from/to the database. The DBMS’s abstract view of a user program is a sequence of transactions (reads and writes). To understand database recovery, we must first understand the concept of transaction integrity. 4 Transactions A transaction is considered a logical unit of work ‒ START Statement: BEGIN TRANSACTION ‒ END Statement: COMMIT ‒ Execution errors: ROLLBACK Assume we want to transfer $100 from one bank (A) account to another (B): UPDATE Account_A SET Balance= Balance -100; UPDATE Account_B SET Balance= Balance +100; We want these two operations to appear as a single atomic action 5 Transactions We want these two operations to appear as a single atomic action ‒ To avoid inconsistent states of the database in-between the two updates ‒ And obviously we cannot allow the first UPDATE to be executed and the second not or vice versa. -
(BI) Using MS Excel Powerpivot
2018 ASCUE Proceedings Developing an Introductory Class in Business Intelligence (BI) Using MS Excel Powerpivot Dr. Sam Hijazi Trevor Curtis Texas Lutheran University 1000 West Court Street Seguin, Texas 78130 [email protected] Abstract Asking questions about your data is a constant application of all business organizations. To facilitate decision making and improve business performance, a business intelligence application must be an in- tegral part of everyday management practices. Microsoft Excel added PowerPivot and PowerPivot offi- cially to facilitate this process with minimum cost, knowing that many business people are already fa- miliar with MS Excel. This paper will design an introductory class to business intelligence (BI) using Excel PowerPivot. If an educator decides to adopt this paper for teaching an introductory BI class, students should have previ- ous familiarity with Excel’s functions and formulas. This paper will focus on four significant phases all students need to complete in a three-credit class. First, students must understand the process of achiev- ing small database normalization and how to bring these tables to Excel or develop them directly within Excel PowerPivot. This paper will walk the reader through these steps to complete the task of creating the normalization, along with the linking and bringing the tables and their relationships to excel. Sec- ond, an introduction to Data Analysis Expression (DAX) will be discussed. Introduction It is not that difficult to realize the increase in the amount of data we have generated in the recent memory of our existence as a human race. To realize that more than 90% of the world’s data has been amassed in the past two years alone (Vidas M.) is to realize the need to manage such volume. -
SQL Server Protection Whitepaper
SQL Server Protection Whitepaper Contents 1. Introduction ..................................................................................................................................... 2 Documentation .................................................................................................................................................................. 2 Licensing ............................................................................................................................................................................... 2 The benefits of using the SQL Server Add-on ....................................................................................................... 2 Requirements ...................................................................................................................................................................... 2 2. SQL Protection overview ................................................................................................................ 3 User databases ................................................................................................................................................................... 3 System databases .............................................................................................................................................................. 4 Transaction logs ................................................................................................................................................................ -
Keys Are, As Their Name Suggests, a Key Part of a Relational Database
The key is defined as the column or attribute of the database table. For example if a table has id, name and address as the column names then each one is known as the key for that table. We can also say that the table has 3 keys as id, name and address. The keys are also used to identify each record in the database table . Primary Key:- • Every database table should have one or more columns designated as the primary key . The value this key holds should be unique for each record in the database. For example, assume we have a table called Employees (SSN- social security No) that contains personnel information for every employee in our firm. We’ need to select an appropriate primary key that would uniquely identify each employee. Primary Key • The primary key must contain unique values, must never be null and uniquely identify each record in the table. • As an example, a student id might be a primary key in a student table, a department code in a table of all departments in an organisation. Unique Key • The UNIQUE constraint uniquely identifies each record in a database table. • Allows Null value. But only one Null value. • A table can have more than one UNIQUE Key Column[s] • A table can have multiple unique keys Differences between Primary Key and Unique Key: • Primary Key 1. A primary key cannot allow null (a primary key cannot be defined on columns that allow nulls). 2. Each table can have only one primary key. • Unique Key 1. A unique key can allow null (a unique key can be defined on columns that allow nulls.) 2. -
Rdbmss Why Use an RDBMS
RDBMSs • Relational Database Management Systems • A way of saving and accessing data on persistent (disk) storage. 51 - RDBMS CSC309 1 Why Use an RDBMS • Data Safety – data is immune to program crashes • Concurrent Access – atomic updates via transactions • Fault Tolerance – replicated dbs for instant failover on machine/disk crashes • Data Integrity – aids to keep data meaningful •Scalability – can handle small/large quantities of data in a uniform manner •Reporting – easy to write SQL programs to generate arbitrary reports 51 - RDBMS CSC309 2 1 Relational Model • First published by E.F. Codd in 1970 • A relational database consists of a collection of tables • A table consists of rows and columns • each row represents a record • each column represents an attribute of the records contained in the table 51 - RDBMS CSC309 3 RDBMS Technology • Client/Server Databases – Oracle, Sybase, MySQL, SQLServer • Personal Databases – Access • Embedded Databases –Pointbase 51 - RDBMS CSC309 4 2 Client/Server Databases client client client processes tcp/ip connections Server disk i/o server process 51 - RDBMS CSC309 5 Inside the Client Process client API application code tcp/ip db library connection to server 51 - RDBMS CSC309 6 3 Pointbase client API application code Pointbase lib. local file system 51 - RDBMS CSC309 7 Microsoft Access Access app Microsoft JET SQL DLL local file system 51 - RDBMS CSC309 8 4 APIs to RDBMSs • All are very similar • A collection of routines designed to – produce and send to the db engine an SQL statement • an original -
What Is Nosql? the Only Thing That All Nosql Solutions Providers Generally Agree on Is That the Term “Nosql” Isn’T Perfect, but It Is Catchy
NoSQL GREG SYSADMINBURD Greg Burd is a Developer Choosing between databases used to boil down to examining the differences Advocate for Basho between the available commercial and open source relational databases . The term Technologies, makers of Riak. “database” had become synonymous with SQL, and for a while not much else came Before Basho, Greg spent close to being a viable solution for data storage . But recently there has been a shift nearly ten years as the product manager for in the database landscape . When considering options for data storage, there is a Berkeley DB at Sleepycat Software and then new game in town: NoSQL databases . In this article I’ll introduce this new cat- at Oracle. Previously, Greg worked for NeXT egory of databases, examine where they came from and what they are good for, and Computer, Sun Microsystems, and KnowNow. help you understand whether you, too, should be considering a NoSQL solution in Greg has long been an avid supporter of open place of, or in addition to, your RDBMS database . source software. [email protected] What Is NoSQL? The only thing that all NoSQL solutions providers generally agree on is that the term “NoSQL” isn’t perfect, but it is catchy . Most agree that the “no” stands for “not only”—an admission that the goal is not to reject SQL but, rather, to compensate for the technical limitations shared by the majority of relational database implemen- tations . In fact, NoSQL is more a rejection of a particular software and hardware architecture for databases than of any single technology, language, or product . -
Oracle Nosql Database
An Oracle White Paper November 2012 Oracle NoSQL Database Oracle NoSQL Database Table of Contents Introduction ........................................................................................ 2 Technical Overview ............................................................................ 4 Data Model ..................................................................................... 4 API ................................................................................................. 5 Create, Remove, Update, and Delete..................................................... 5 Iteration ................................................................................................... 6 Bulk Operation API ................................................................................. 7 Administration .................................................................................... 7 Architecture ........................................................................................ 8 Implementation ................................................................................... 9 Storage Nodes ............................................................................... 9 Client Driver ................................................................................. 10 Performance ..................................................................................... 11 Conclusion ....................................................................................... 12 1 Oracle NoSQL Database Introduction NoSQL databases -
How to Conduct Transaction Log Analysis for Web Searching And
Search Log Analysis: What is it; what’s been done; how to do it Bernard J. Jansen School of Information Sciences and Technology The Pennsylvania State University 329F IST Building University Park, Pennsylvania 16802 Email: [email protected] Abstract The use of data stored in transaction logs of Web search engines, Intranets, and Web sites can provide valuable insight into understanding the information-searching process of online searchers. This understanding can enlighten information system design, interface development, and devising the information architecture for content collections. This article presents a review and foundation for conducting Web search transaction log analysis. A methodology is outlined consisting of three stages, which are collection, preparation, and analysis. The three stages of the methodology are presented in detail with discussions of goals, metrics, and processes at each stage. Critical terms in transaction log analysis for Web searching are defined. The strengths and limitations of transaction log analysis as a research method are presented. An application to log client-side interactions that supplements transaction logs is reported on, and the application is made available for use by the research community. Suggestions are provided on ways to leverage the strengths of, while addressing the limitations of, transaction log analysis for Web searching research. Finally, a complete flat text transaction log from a commercial search engine is available as supplementary material with this manuscript. Introduction Researchers have used transaction logs for analyzing a variety of Web systems (Croft, Cook, & Wilder, 1995; Jansen, Spink, & Saracevic, 2000; Jones, Cunningham, & McNab, 1998; Wang, 1 of 42 Berry, & Yang, 2003). Web search engine companies use transaction logs (also referred to as search logs) to research searching trends and effects of system improvements (c.f., Google at http://www.google.com/press/zeitgeist.html or Yahoo! at http://buzz.yahoo.com/buzz_log/?fr=fp- buzz-morebuzz).