Software Architect Embedded & Real Time Systems

Total Page:16

File Type:pdf, Size:1020Kb

Software Architect Embedded & Real Time Systems SOFTWARE ARCHITECT EMBEDDED & REAL TIME SYSTEMS EMMANUEL BLOT - 43 years old 688 chemin de la Clémencière F-83470 Seillons Source d’Argens, France Phone: +33 631 085 991 / e-mail: [email protected] PROFILE Software architect for embedded system devices on real-time, multi-threaded OS, with skills in IT administration, version control management & network solutions. QUALIFICATIONS French Graduate Engineering Degree awarded by ENIB 1997 Graduate Engineering School in Electronics and Computer Science A' levels in mathematics, physics and technical sciences, with distinction 1992 PROFESSIONAL EXPERIENCE TAGSYS, Aubagne (PACA) since 07/2016 Embedded Software Technical Leader. SW design & implementation in a small HW/FW team ★ RFID tag energiser with a Bluetooth LE communication link ‣ BLE 4.x peripheral device based on nRF52-832 (Cortex-M4F), using a custom BLE profile ‣ Device drivers - SPI, I2C, 1-wire, PLL, DCVGA, battery and temperature monitoring ‣ Analog UHF RFID signal detection, amplification and regulation ★ Bluetooth LE stack management, with CLI interface, scripting capability and various SW tools to support, test and drive hardware components, written in python 3 ★ Autonomous FW updater for nRF52-based device, with OLED screen and SWD master (ARM1126) ★ Production/Test bench for UHF RF splitter, with PyGTK3 GUI ★ I2C slave battery gauge emulator implementing a USB-CDC-ACM (VCP) bridge on STM32L4 ★ Embedded gateway application written in Python 3: ‣ Bluetooth LE central role, w/ TCP server and Google Protocol Buffer based protocol ‣ I2C+UARTs slave device management ‣ Linux Buildroot-based platform (Cortex-A8) ★ UHF band frequency shifter based on TI MSP430 with automatique UHF antenna selection ★ Bluetooth LE central / VCP bridge based on nRF52-840 USB dongle ★ Single-command build system for all projects (Python, STM32, nRF52, MSP430) ★ Full Docker build environment to ensure FW build reproducibility NEOTION, Aubagne (PACA) 08/2007-06/2016 (9 years) Software architect & technical leader for Digital TV in a 10-people development team ★ Design of technical solutions for the versatile Neotion product lines, ensuring coherence, evolution and security of the dedicated SDKs ★ Design & development of the system platform & drivers for integrated DVB CSA / CI+ modules dedicated to DVB-T/S/C digital TV receivers ★ Proposal, study & design of a new, cost-optimised, versatile manufacturing system, using an innovative solution based on Atom boards running Linux & Python ★ Design & development of an automated test infrastructure for remotely controlled embedded targets, with full integration to the preexisting continuous integration solution (Trac/SVN) ★ Development of debugging, programming and fusing tools for the Neotion ASICs ★ Full virtualisation of the Neotion hardware platform with a dedicated port of the QEMU emulator. ST MICROELECTRONICS, Grenoble (Rhône-Alpes) 01/2004-07/2007 (3 years 1/2) Software engineer for Symbian OS EKA2 / ARMv5 mobile phone targets, in an 8-people video team ★ Design & development of Symbian device drivers for 3G smart phones: camera, TV encoder, ... ★ Technical leader for C/C++ development and software design Contractor for MOTOROLA, Toulouse (Midi-Pyrénées) 10/2002-12/2003 (15 months) Software Engineer for Symbian OS 7.0s ARMv5 platforms, in a 6-people multimedia team ★ Development & integration of a Bluetooth device driver for UMTS/3G mobile phones Contractor for SMART FUSION, Sophia Antipolis (PACA) 01/2002-09/2002 (10 months) Software engineer for J2ME on Linux ARMv5 mobile devices ★ Design & full implementation of MIDp for embedded Linux SA1100 platforms, as well as low level APIs and drivers (frame buffer, touch screen, keypad, ...) ★ Design & implementation of a building environment for both C and Java projects SUN MICROSYSTEMS, Dublin (Ireland) 08/2000-12/2001 (1 year 1/2) Java Licensee Engineer - Support of SUN licensees on J2ME technologies (CLDC/MIDp) ★ Technical keynotes about J2ME technologies for SUN licensees ★ Technical expertise to mobile phone manufacturers, for integrating and porting J2ME technologies ★ Port of the kVM on the Psion Revo & performance optimisations of the VM I/O Contractor for Hewlett-Packard, Grenoble (Rhône-Alpes) 05/1999-07/2000 (14 months) Software engineer for Web technologies Linux x86 servers ★ Development of a web-based license management software, w/ Java & CORBA middle-ware Contractor for ALCATEL P.A.S., Valence (Rhône-Alpes) 08/1998-04/1999 (9 months) Software engineer on real-time VxWorks PowerPC devices ★ Development of a brand new generation device for postal sorting: high-level control layers and DMA driver for VME-InterBus interface benchmarking NATIONAL SERVICE, Salon de Provence (PACA) 10/1997-07/1998 (10 months) Network administrator ★ IT administrator on IBM AIX & Linux ★ Installation of a local intranet and PPP gateways to connect existing Ethernet/IP networks ★ C language and computer science teacher CANON RESEARCH CENTER, Rennes (Bretagne) 02/1996-07/1996 & 08/1997-09/1997 Software engineer for still image compression ★ Still image compression software optimisation for bubble-jet colour printer ★ Development of a multithreaded GUI for a still image wavelet compression library LANGUAGES French Native speaker English Fluent, 17-month job in Ireland (2000-2001). TOEFL’97 score 573 COMPUTER SKILLS Language C, Python 3 & 2, ASM, C++, Shell, Perl, Java, PHP, XHTML/XML, UML OS eCos, Minix, Linux, macOS, ChibiOS, FreeRTOS, Symbian, VxWorks, Windows ISA ARM v4/v5/v6/v7 32b & thumb, Intel x86, 8051, PowerPC, 68K CPU Cortex-M0+/M4, Cortex-A5, 7TDMI, 926-EJ/S, MSP430 Toolchain LLVM/Clang/lld, GNU (gcc, gdb, ld, gas), musl-c & newlib, TI, CMake/Make Cryptography AES, RSA, SHA, SSL, TLS SCM Trac, Subversion, GitHub, Git, CVS, ClearCase Network/Server Docker, Apache, LDAP, SQL, HTTP, SMTP, IMAP, TCP/IP, PPP, LLRP, GPB Bus Ethernet, USB, SPI, I2C, 1-Wire, JTAG/SWD, SCSI Wireless Bluetooth LE, RFID ADDITIONAL INFORMATION Member of the board of directors of the Microlight Aircraft French Federation (FFPLUM) ★ IT administrator and developer from 2013 to 2017 Former member of the ENIB graduated engineer association bureau ★ IT administrator and developer from 1998 to 2008 Open Source software developer ★ PyFTDI: USB-Serial/SPI/I2C/JTAG adapter driver as a pure Python module ★ PySPIFlash: SPI data flash reader/writer for PyFTDI ★ Trac free software, along with several dedicated plug-ins ★ Maintainer of a LLVM/Clang based cross-compilation toolchain for Cortex-M micro-controllers (Linux/Docker & macOS hosts) ★ Contribution (improvements, bug fixing, porting) to many open-source projects .
Recommended publications
  • Comparison of Contemporary Real Time Operating Systems
    ISSN (Online) 2278-1021 IJARCCE ISSN (Print) 2319 5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 11, November 2015 Comparison of Contemporary Real Time Operating Systems Mr. Sagar Jape1, Mr. Mihir Kulkarni2, Prof.Dipti Pawade3 Student, Bachelors of Engineering, Department of Information Technology, K J Somaiya College of Engineering, Mumbai1,2 Assistant Professor, Department of Information Technology, K J Somaiya College of Engineering, Mumbai3 Abstract: With the advancement in embedded area, importance of real time operating system (RTOS) has been increased to greater extent. Now days for every embedded application low latency, efficient memory utilization and effective scheduling techniques are the basic requirements. Thus in this paper we have attempted to compare some of the real time operating systems. The systems (viz. VxWorks, QNX, Ecos, RTLinux, Windows CE and FreeRTOS) have been selected according to the highest user base criterion. We enlist the peculiar features of the systems with respect to the parameters like scheduling policies, licensing, memory management techniques, etc. and further, compare the selected systems over these parameters. Our effort to formulate the often confused, complex and contradictory pieces of information on contemporary RTOSs into simple, analytical organized structure will provide decisive insights to the reader on the selection process of an RTOS as per his requirements. Keywords:RTOS, VxWorks, QNX, eCOS, RTLinux,Windows CE, FreeRTOS I. INTRODUCTION An operating system (OS) is a set of software that handles designed known as Real Time Operating System (RTOS). computer hardware. Basically it acts as an interface The motive behind RTOS development is to process data between user program and computer hardware.
    [Show full text]
  • Create an Email with Subject Title “Embedded Software Engineer”, Email a Copy of Your Resume to [email protected]
    To Apply for This Position: Create an email with subject title “Embedded Software Engineer”, email a copy of your resume to [email protected] Location Address: ALLEN PARK, MI,48101 Position Description: TITLE: Embedded Software Engineer ‐ Hypervisor OS technologies This position is responsible to develop QNX and Android operating system images for Ford infotainment products. This includes creating and integrating code for: bootloader, kernel, drivers, type 1 hypervisor, and build environment. Skills Required: • Lead the design, bring‐up and support of QNX and Android operating system images • Create virt‐io drivers for QNX or Android guest operating systems • Participate in root cause analysis of hardware quality problems and software defects • Participate in system design, documentation, and testing to deliver a best‐in‐class infotainment system Experience Required: • 5+ years operating system experience involving Linux or QNX • 5+ years C/C++ software development experience on embedded, mobile, or consumer electronic platforms Experience Preferred: • Experience with Type 1 hypervisors • Experience creating virt‐io drivers • Mastery of C/C++ language, GNU tool chain, and Unix (QNX, Linux, or equivalent) • Experience with embedded build systems including QNX system builder, buildroot, yocto, or equivalent • Knowledge of in‐vehicle signaling and communication mechanisms such as CAN • Proficiency with revision control including Git, Subversion, or equivalent • Multi‐site software project team experience Education Required: • Bachelor's degree in Computer Engineering, Electrical Engineering, Computer Science, or related Education Preferred: • Master's degree in Computer Engineering, Electrical Engineering or Computer Science Additional Information: Web Based Assessment not required for this position. Visa Sponsorship and Domestic Relocation is available for this position.
    [Show full text]
  • Symbian OS Platform Security Model
    THE SYMBIAN OS BECAME FULLY OPEN sourced in February 2010, which opens even BO LI, ELENA RESHETOVA, AND T U O M A S A U R A more possibilities for application develop- ers to understand and analyze its security Symbian OS solution. We present a short introduction to the software features of Symbian plat- platform form security: three trust tiers, capability model, data caging, and the Symbian signed security model process. We also try to compare the security Bo Li is a second-year student in the master’s solution with the classical design principles program in security and mobile computing in this area, as well as briefly discuss gen- at Aalto University, Finland. He got his bach- elor’s degree in communications engineering eral design challenges and potential weak- in 2008 from Fudan University, China. nesses. [email protected] Elena Reshetova is a senior security engineer Introduction at Nokia, as well as a postgraduate student at Aalto University. She is interested in With the development of mobile devices and mo- various research areas related to platform bile computers, more and more people rely strongly security, security aspects of networking, and on them. People use mobile devices and mobile cryptography. computers to arrange their schedules, contact each [email protected] other, process emails, and share rich media con- tent. People believe it is safe to do so because it Tuomas Aura is a professor at Aalto Uni- versity, Finland. His research interests are feels secure just knowing it is “right there with security and privacy in communications you” [8].
    [Show full text]
  • Performance Study of Real-Time Operating Systems for Internet Of
    IET Software Research Article ISSN 1751-8806 Performance study of real-time operating Received on 11th April 2017 Revised 13th December 2017 systems for internet of things devices Accepted on 13th January 2018 E-First on 16th February 2018 doi: 10.1049/iet-sen.2017.0048 www.ietdl.org Rafael Raymundo Belleza1 , Edison Pignaton de Freitas1 1Institute of Informatics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, CP 15064, Porto Alegre CEP: 91501-970, Brazil E-mail: [email protected] Abstract: The development of constrained devices for the internet of things (IoT) presents lots of challenges to software developers who build applications on top of these devices. Many applications in this domain have severe non-functional requirements related to timing properties, which are important concerns that have to be handled. By using real-time operating systems (RTOSs), developers have greater productivity, as they provide native support for real-time properties handling. Some of the key points in the software development for IoT in these constrained devices, like task synchronisation and network communications, are already solved by this provided real-time support. However, different RTOSs offer different degrees of support to the different demanded real-time properties. Observing this aspect, this study presents a set of benchmark tests on the selected open source and proprietary RTOSs focused on the IoT. The benchmark results show that there is no clear winner, as each RTOS performs well at least on some criteria, but general conclusions can be drawn on the suitability of each of them according to their performance evaluation in the obtained results.
    [Show full text]
  • OS Selection for Dummies
    OS SELECTION HOW TO CHOOSE HOW TO CHOOSE Choosing your OS is the first step, so take the time to consider your choice fully. There are many parameters to take into account: l Is this a new project or the evolution of an existing product? l Using the same SW stack? Re-using existing code? l Is your team familiar with a particular OS? Ø Using an OS you are already comfortable with can help l What are the HW constraints of your system? Ø Some operating systems require more memory/processing power than others l Have no SW team? Not sure about the above? Ø Contact us so we can help you decide! Ø We can also introduce you to one of our many partners! 1 OS SELECTION OPEN SOURCE VS. COMMERCIAL OS Embedded OS BSP Provider $ Cost Open-Source OS Boundary Devices • Embedded Linux / Android Embedded Linux $0, included • Large pool of developers available with Board Purchase • Strong community • Royalty-free And / or partners 3rd Party - Commercial OS Partners • QNX / Win10 IoT / Green Hills $>0, depends on • Professional support requirements • Unique set of development tools 2 OS SELECTION OPEN SOURCE SELECTION OS SELECTION PROS CONS Embedded Linux Most powerful / optimized Complexity for newcomers solution, maintained by NXP • Build systems Ø Yocto / Buildroot Simpler solution, makefile- Not as flexible as Yocto Ø Everything built from scratch based, maintained by BD Desktop-like approach, Harder to customize, non- Package-based distribution easy-to-use atomic updates, no cross- • Ubuntu / Debian compilation SDK Apt install / update, millions • Packages installed from server of prebuilt packages available Android Millions of apps available, same number of developers, Resource-hungry, complex • AOSP-based (no GMS) development environment, BSP modifications (HAL) • APK applications IDE + debugging tools 3 SOFTWARE PARTNERS Boundary Devices has an industry-leading group of software partners.
    [Show full text]
  • RIOT: an Open Source Operating System for Low-End Embedded Devices in the Iot Emmanuel Baccelli, Cenk Gundo¨ Gan,˘ Oliver Hahm, Peter Kietzmann, Martine S
    This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of Things Journal 1 RIOT: an Open Source Operating System for Low-end Embedded Devices in the IoT Emmanuel Baccelli, Cenk Gundo¨ gan,˘ Oliver Hahm, Peter Kietzmann, Martine S. Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias Wahlisch¨ Abstract—As the Internet of Things (IoT) emerges, compact low-end IoT devices. RIOT runs on minimal memory in the operating systems are required on low-end devices to ease devel- order of ≈10kByte, and can run on devices with neither MMU opment and portability of IoT applications. RIOT is a prominent (memory management unit) nor MPU (memory protection free and open source operating system in this space. In this paper, we provide the first comprehensive overview of RIOT. We cover unit). The goal of this paper is to provide an overview of the key components of interest to potential developers and users: RIOT, both from the operating system point of view, and from the kernel, hardware abstraction, and software modularity, both an open source software and ecosystem point of view. conceptually and in practice for various example configurations. We explain operational aspects like system boot-up, timers, power Prior work [28], [29] has surveyed the space of operating management, and the use of networking. Finally, the relevant APIs as exposed by the operating system are discussed along systems for low-end IoT devices.
    [Show full text]
  • Powerview Command Reference
    PowerView Command Reference TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents ...................................................................................................................... PowerView User Interface ............................................................................................................ PowerView Command Reference .............................................................................................1 History ...................................................................................................................................... 12 ABORT ...................................................................................................................................... 13 ABORT Abort driver program 13 AREA ........................................................................................................................................ 14 AREA Message windows 14 AREA.CLEAR Clear area 15 AREA.CLOSE Close output file 15 AREA.Create Create or modify message area 16 AREA.Delete Delete message area 17 AREA.List Display a detailed list off all message areas 18 AREA.OPEN Open output file 20 AREA.PIPE Redirect area to stdout 21 AREA.RESet Reset areas 21 AREA.SAVE Save AREA window contents to file 21 AREA.Select Select area 22 AREA.STDERR Redirect area to stderr 23 AREA.STDOUT Redirect area to stdout 23 AREA.view Display message area in AREA window 24 AutoSTOre ..............................................................................................................................
    [Show full text]
  • Soft Tools for Robotics and Controls Implementations
    Soft Tools for Robotics and Controls Implementations A Thesis Submitted to the Faculty of Drexel University by Robert M. Sherbert in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering June 2011 c Copyright 2011 Robert M. Sherbert. All rights reserved. ii Dedications To the parents who placed me on my path, to the mentors who guided me along its many turns, and to the friends who made the long journey swift. iii Acknowledgments There are a number of people to whom I owe a great deal of thanks in completing this document. While the labor has been my own, the inspiration for it and the support to finish it have come from the community around me. In creating this work I have taken on the role of toolsmith and, as tools are worthless without their users, it is to these individuals that I am especially indebted. I would like to thank Dr. Oh for lending his vision of robotics testing and prototyping which inspired this work. You have taught me more than I realized there was to know about the modern practice of science. I would also like to thank Dr. Chmielewski for lending his experience, insight, and enthusiasm to the project. Having these ideas weighed against and improved by your practical knowledge has provided a very important validation for me. Above all I would like to thank my friends at DASL, without whom the entirety of this project would have been consigned to the dust bin long ago. You have given me not only critical feedback and suggestions but also the support and encouragement that has helped me carry this to completion.
    [Show full text]
  • Symbian Foundation Press Conference
    Symbian Foundation Press conference M/C – Merran Wrigley Exciting Internet experiences for the aspirations of billions 2 © 2008 Symbian Foundation Mobile software set free Symbian Foundation Kai Öistämö Executive Vice President, Nokia Shared vision for an unparalleled open mobile software platform 4 © 2008 Symbian Foundation That unites Symbian OS, S60, UIQ and MOAP(S) 5 © 2008 Symbian Foundation Creating the most proven, open, complete mobile software platform 6 © 2008 Symbian Foundation With over 200 million devices already shipped 7 © 2008 Symbian Foundation For free. 8 © 2008 Symbian Foundation Creating one platform, royalty-free Foundation Differentiated Member experience MOAP(S) 9 © 2008 Symbian Foundation Creating one platform, royalty-free Foundation Differentiated Member experience Symbian Foundation Platform Applications suite Runtimes UI framework Middleware Operating system Tools & SDK 10 © 2008 Symbian Foundation The first step to our goal • Acquiring Symbian Ltd • Closing expected in Q4 2008 • Symbian Ltd to be part of Nokia • Nokia will contribute Symbian OS and S60 to Symbian Foundation 11 © 2008 Symbian Foundation Fulfilling the Symbian mission Symbian Foundation Nigel Clifford CEO, Symbian Symbian Ltd Mission To become the most widely used software platform on the planet 13 © 2008 Symbian Foundation The leading global open platform 12% Symbian Linux 11% Microsoft RIM 60% Apple 11% Other Source Canalys – Cumulative 4% 12 month period to Q1 2008 2% 14 © 2008 Symbian Foundation The choice for the top vendors Samsung MOTO
    [Show full text]
  • MANAGING a REAL-TIME EMBEDDED LINUX PLATFORM with BUILDROOT John Diamond, Kevin Martin Fermi National Accelerator Laboratory, Batavia, IL 60510
    MANAGING A REAL-TIME EMBEDDED LINUX PLATFORM WITH BUILDROOT John Diamond, Kevin Martin Fermi National Accelerator Laboratory, Batavia, IL 60510 Desktop distributions are an awkward Buildroot + ucLibc + Busybox + RTAI Quantitative Results implementation of an Embedded RTOS Buildroot – downloads, unpacks, • Whole build process is automated resulting in • Architecture-dependent binary configures, compiles and installs system much quicker build times (hours not days) software automatically • Kernel and root filesystem size: 3.5 MB – 20 packages uClibc – Small-footprint standard C library MB (reduction of 99%) • Loaded with unnecessary software Busybox – all-in-one UNIX utilities and shell • Boot-time: ~9 seconds • Huge footprints RTAI – Real-Time Linux extensions = Qualitative Results • Allows integration with revision control into First Try: Build Linux from Source the platform development process, making it • Success! But.. 2. Buildroot’s menuconfig generates a package configuration file easier to manage an ecosystem of targets • Is as difficult as it sounds and kernel configuration file • Community support for x86 & ARM targets Linux Kernel • Overwhelming number of packages and Configuration gives us confidence that future targets can be patches Package supported without much effort 1. Developer Configuration • No version control configures build via Buildroot’s • Cross-compile even more headaches menuconfig Internet Build Process Power Supply Control Quench Protection Git / CVS / SVN and Regulation for the System for Tevatron Did not do what we needed: Fermilab Linac Electron Lens (TEL II) 3. The build process pulls 4. The output from the software packages from build process is a kernel • Small-footprint network bootable image the internet and custom bzImage bzImage file with an softare packages from a integrated root filesystem ARM Cortex A-9 source code repository file PC/104 AMD • Automated build system Geode SBC Beam Position Monitor Power Supply Control prototype for Fermilab and Regulation for • Support for multiple architectures 5.
    [Show full text]
  • Linux Based Mobile Operating Systems
    INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores Linux Based Mobile Operating Systems DIOGO SÉRGIO ESTEVES CARDOSO Licenciado Trabalho de projecto para obtenção do Grau de Mestre em Engenharia Informática e de Computadores Orientadores : Doutor Manuel Martins Barata Mestre Pedro Miguel Fernandes Sampaio Júri: Presidente: Doutor Fernando Manuel Gomes de Sousa Vogais: Doutor José Manuel Matos Ribeiro Fonseca Doutor Manuel Martins Barata Julho, 2015 INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores Linux Based Mobile Operating Systems DIOGO SÉRGIO ESTEVES CARDOSO Licenciado Trabalho de projecto para obtenção do Grau de Mestre em Engenharia Informática e de Computadores Orientadores : Doutor Manuel Martins Barata Mestre Pedro Miguel Fernandes Sampaio Júri: Presidente: Doutor Fernando Manuel Gomes de Sousa Vogais: Doutor José Manuel Matos Ribeiro Fonseca Doutor Manuel Martins Barata Julho, 2015 For Helena and Sérgio, Tomás and Sofia Acknowledgements I would like to thank: My parents and brother for the continuous support and being the drive force to my live. Sofia for the patience and understanding throughout this challenging period. Manuel Barata for all the guidance and patience. Edmundo Azevedo, Miguel Azevedo and Ana Correia for reviewing this document. Pedro Sampaio, for being my counselor and college, helping me on each step of the way. vii Abstract In the last fifteen years the mobile industry evolved from the Nokia 3310 that could store a hopping twenty-four phone records to an iPhone that literately can save a lifetime phone history. The mobile industry grew and thrown way most of the proprietary operating systems to converge their efforts in a selected few, such as Android, iOS and Windows Phone.
    [Show full text]
  • Operating System Components for an Embedded Linux System
    INSTITUTEFORREAL-TIMECOMPUTERSYSTEMS TECHNISCHEUNIVERSITATM¨ UNCHEN¨ PROFESSOR G. F ARBER¨ Operating System Components for an Embedded Linux System Martin Hintermann Studienarbeit ii Operating System Components for an Embedded Linux System Studienarbeit Executed at the Institute for Real-Time Computer Systems Technische Universitat¨ Munchen¨ Prof. Dr.-Ing. Georg Farber¨ Advisor: Prof.Dr.rer.nat.habil. Thomas Braunl¨ Author: Martin Hintermann Kirchberg 34 82069 Hohenschaftlarn¨ Submitted in February 2007 iii Acknowledgements At first, i would like to thank my supervisor Prof. Dr. Thomas Braunl¨ for giving me the opportunity to take part at a really interesting project. Many thanks to Thomas Sommer, my project partner, for his contribution to our good work. I also want to thank also Bernard Blackham for his assistance by email and phone at any time. In my opinion, it was a great cooperation of all persons taking part in this project. Abstract Embedded systems can be found in more and more devices. Linux as a free operating system is also becoming more and more important in embedded applications. Linux even replaces other operating systems in certain areas (e.g. mobile phones). This thesis deals with the employment of Linux in embedded systems. Various architectures of embedded systems are introduced and the characteristics of common operating systems for these devices are reviewed. The architecture of Linux is examined by looking at the particular components such as kernel, standard C libraries and POSIX tools for embedded systems. Furthermore, there is a survey of real-time extensions for the Linux kernel. The thesis also treats software development for embedded Linux ranging from the prerequi- sites for compiling software to the debugging of binaries.
    [Show full text]