Simplicial Presheaves
journal of Pure and Applied Algebra 47 (1987) 35-87 35 N0rth-Holland SIMPLICIAL PRESHEAVES J.F. JARDINE* Mathematics Department, University of Western Ontario, London, Ontario N6A 5B7, Canada Communicated by E.M. Friedlander Received 5 October 1985 Revised January 1986 istroduction The central organizational theorem of simplicial homotopy theory asserts that the category S of simplicial sets has a closed model structure. This means that S comes equipped with three classes of morphisms, namely cofibrations (inclusions), fibra- tions (Kan fibrations) and weak equivalences (maps which induce l~omotopy equivalences of realizations), which together satisfy Quillen's closed model axioms CM1 to CMS. This theorem is well known and widely used (see [23] and [3]). One could reasonably ask for such a theorem for the category SShv(C) of simpli- dal sheaves on a Grothendieck site C, based on the intuition that any theorem which is true for sets should be true for topoi. Immediately, however, a dilemma presents itself. On the one hand, cohomological considerations, like the Verdier hyper- covering theorem, suggest a local theory of Kan fibrations. For example, if opl r is the site of open subsets of a topological space T, then a map f: X-, Y of simplicial sheaves should be a local fibration if and only if each map of stalks fx: Xx--" Yx is a Kan fibration in the usual sense. On the other hand, monomorphisms surely should be cofibrations, giving a global theory. The two approaches do, in fact, yield axiomatic homotopy theories for all categories of simplicial sheaves. The local theory for the category of simplicial sheaves on a topological space was constructed by Brown [4]; the corresponding global theory was developed slightly later by Brown and Gersten [5].
[Show full text]