Learning to Search in Branch and Bound Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

Learning to Search in Branch and Bound Algorithms Learning to Search in Branch-and-Bound Algorithms⇤ He He Hal Daume´ III Jason Eisner Department of Computer Science Department of Computer Science University of Maryland Johns Hopkins University College Park, MD 20740 Baltimore, MD 21218 hhe,hal @cs.umd.edu [email protected] { } Abstract Branch-and-bound is a widely used method in combinatorial optimization, in- cluding mixed integer programming, structured prediction and MAP inference. While most work has been focused on developing problem-specific techniques, little is known about how to systematically design the node searching strategy on a branch-and-bound tree. We address the key challenge of learning an adap- tive node searching order for any class of problem solvable by branch-and-bound. Our strategies are learned by imitation learning. We apply our algorithm to linear programming based branch-and-bound for solving mixed integer programs (MIP). We compare our method with one of the fastest open-source solvers, SCIP; and a very efficient commercial solver, Gurobi. We demonstrate that our approach achieves better solutions faster on four MIP libraries. 1 Introduction Branch-and-bound (B&B) [1] is a systematic enumerative method for global optimization of non- convex and combinatorial problems. In the machine learning community, B&B has been used as an inference tool in MAP estimation [2, 3]. In applied domains, it has been applied to the “inference” stage of structured prediction problems (e.g., dependency parsing [4, 5], scene understanding [6], ancestral sequence reconstruction [7]). B&B recursively divides the feasible set of a problem into disjoint subsets, organized in a tree structure, where each node represents a subproblem that searches only the subset at that node. If computing bounds on a subproblem does not rule out the possibility that its subset contains the optimal solution, the subset can be further partitioned (“branched”) as needed. A crucial question in B&B is how to specify the order in which nodes are considered. An effective node ordering strategy guides the search to promising areas in the tree and improves the chance of quickly finding a good incumbent solution, which can be used to rule out other nodes. Unfortunately, no theoretically guaranteed general solution for node ordering is currently known. Instead of designing node ordering heuristics manually for each problem type, we propose to speed up B&B search by automatically learning search heuristics that are adapted to a family of problems. • Non-problem-dependent learning. While our approach learns problem-specific policies, it can be applied to any family of problems solvable by the B&B framework. We use imitation learning to automatically learn the heuristics, free of the trial-and-error tuning and rule design by domain experts in most B&B algorithms. • Dynamic decision-making. Our decision-making process is adaptive on three scales. First, it learns different strategies for different problem types. Second, within a problem type, it can evaluate the hardness of a problem instance based on features describing the solving progress. Third, within a problem instance, it adapts the searching strategy to different levels of the B&B tree and makes decisions based on node-specific features. ⇤This material is based upon work supported by the National Science Foundation under Grant No. 0964681. 1 +∞ node expansion training examples: x = 5/2# order −13/2 y = 3/2 global lower and +∞ +∞ y ≤ 1 y ≥ 2 upper bound −13/3 < −16/3 ub = +∞# x = 5/3# +∞ lb = −16/3 +∞ x = 5/3# optimal node y = 2 +∞ y = 1 −13/3 −16/3 prune: fathomed node −13/3 x ≤ 1 x ≥ 2 x ≤ 1 x ≥ 2 ub = −3# ub = −3# lb = −16/3 lb = −22/5 −3 +∞ x = 1# INF x = 1# INF −3 y = 1 –22/5 y = 12/5 min −2x − y# y ≤ 2 y ≥ 3 ub = −4# s.t. 3x − 5y ≤ 0# lb = −4 3x + 5y ≤ 15# −4 −3 x = 1# x = 0# x ≥ 0, y ≥ 0# y = 2 −4 −3 y = 3 x, y ∈ Z Figure 1: Using branch-and-bound to solve an integer linear programming minimization. • Easy incorporation of heuristics. Most hand-designed strategies handle only a few heuris- tics, and they set weights on different heuristics by domain knowledge or manual experi- mentation. In our model, multiple heuristics can be simply plugged in as state features for the policy, allowing a hybrid “heuristic” to be learned effectively. We assume that a small set of solved problems are given at training time and the problems to be solved at test time are of the same type. We learn a node selection policy and a node pruning policy from solving the training problems. The node selection policy repeatedly picks a node from the queue of all unexplored nodes, and the node pruning policy decides if the popped node is worth expanding. We formulate B&B search as a sequential decision-making process. We design a simple oracle that knows the optimal solution in advance and only expands nodes containing the optimal solution. We then use imitation learning to learn policies that mimic the oracle’s behavior without perfect information; these policies must even mimic how the oracle would act in states that the ora- cle would not itself reach, as such states may be encountered at test time. We apply our approach to linear programming (LP) based B&B for solving mixed integer linear programming (MILP) prob- lems, and achieve better solutions faster on 4 MILP problem libraries than Gurobi, a recent fast commercial solver competitive with Cplex, and SCIP, one of the fastest open-source solvers [8]. 2 The Branch-and-Bound Framework: An Application in Mixed Integer Linear Programming Consider an optimization problem of minimizing f over a feasible set , where is usually discrete. F F B&B uses a divide and conquer strategy: is recursively divided into its subsets 1, 2,..., p p F F F F such that = i=1 i. The recursion tree is an enumeration tree of all feasible solutions, whose nodes areF subproblemsF and edges are the partition conditions. Slightly abusing notation, we will use i to refer to bothS the subset and its corresponding B&B node from now on. A (convex) relaxation ofF each subproblem is solved to provide an upper/lower bound for that node and its descendants. We denote the upper and lower bound at node i by `ub( i) and `lb( i) respectively where `ub and `lb are bounding functions. F F A common setting where B&B is ubiquitously applied is MILP. A MILP optimization problem has linear objective and constraints, and also requires specified variables to be integer. We assume we are minimizing the objective function in MILP from now on. At each node, we drop the integrality constraints and solve its LP relaxation. We present a concrete example in Figure 1. The optimization problem is shown in the lower right corner. At node i, a local lower bound (shown in lower half of each circle) is found by the LP solver. A local upper bound (shown in upper part of the circle) is available if a feasible solution is found at this node. We automatically get an upper bound if the LP solution happens to be integer feasible, or we may obtain it by heuristics. B&B maintains a queue of active nodes, starting with a single root node on it. At each step, we pop a node from L using a node selection strategy, and compute its bounds. A node Fi L Fi 2 root solution (problem) Algorithm 1 Policy Learning (⇡S⇤ , ⇡P⇤ ) Yes (1) (1) ⇡ = ⇡⇤ ,⇡ = ⇡⇤ , = , = rank push P P S S DS {} DP {} nodes children for k =1to N do for Q in problem set do No queue (Q) (Q) Q (k) (k) pop empty? S , P COLLECTEXAMPLE(Q, ⇡P , ⇡S ) D D (Q) (Q) S S , P P Yes D D [DS D D [DP Yes No ⇡(k+1),⇡(k+1) fathom? prune? S P train classifiers using S and P (k) (k) D D No return Best ⇡S ,⇡P on dev set Figure 2: Our method at runtime (left) and the policy learning algorithm (right). Left: our policy-guided branch-and-bound search. Procedures in the rounded rectangles (shown in blue) are executed by policies. Right: the DAgger learning algorithm. We start by using oracle policies ⇡S⇤ and ⇡⇤ to solve problems in and collect examples along oracle trajectories. In each iteration, P Q we retrain our policies on all examples collected so far (training sets D and S), then collect additional examples by running the newly learned policies. The COLLECTD EXAMPLED procedure is described in Algorithm 2. is fathomed (i.e., no further exploration in its subtree) if one of the following cases is true: (a) ` ( ) is larger than the current global upper bound, which means all solutions in its subtree can lb Fi not possibly be better than the incumbent; (b) `lb( i)=`ub( i); at this point, B&B has found the best solution in the current subtree; (c) The subproblemF is infeasible.F In Figure 1, fathomed nodes are shown in double circles and infeasible nodes are labeled by “INF”. If a node is not fathomed, it is branched into children of i that are pushed onto . Branching conditions are shown next to each edge in Figure 1. The algorithmF terminates whenL is empty or the gap between the global upper bound and lower bound achieves a specified toleranceL level. In the example in Figure 1, we follow a DFS order. Starting from the root node, the blue arrows points to the next node popped from to be branched. Updated global lower and upper bounds after a node expansion is shown on the boardL under each branched node.
Recommended publications
  • A Branch-And-Price Approach with Milp Formulation to Modularity Density Maximization on Graphs
    A BRANCH-AND-PRICE APPROACH WITH MILP FORMULATION TO MODULARITY DENSITY MAXIMIZATION ON GRAPHS KEISUKE SATO Signalling and Transport Information Technology Division, Railway Technical Research Institute. 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan YOICHI IZUNAGA Information Systems Research Division, The Institute of Behavioral Sciences. 2-9 Ichigayahonmura-cho, Shinjyuku-ku, Tokyo 162-0845, Japan Abstract. For clustering of an undirected graph, this paper presents an exact algorithm for the maximization of modularity density, a more complicated criterion to overcome drawbacks of the well-known modularity. The problem can be interpreted as the set-partitioning problem, which reminds us of its integer linear programming (ILP) formulation. We provide a branch-and-price framework for solving this ILP, or column generation combined with branch-and-bound. Above all, we formulate the column gen- eration subproblem to be solved repeatedly as a simpler mixed integer linear programming (MILP) problem. Acceleration tech- niques called the set-packing relaxation and the multiple-cutting- planes-at-a-time combined with the MILP formulation enable us to optimize the modularity density for famous test instances in- cluding ones with over 100 vertices in around four minutes by a PC. Our solution method is deterministic and the computation time is not affected by any stochastic behavior. For one of them, column generation at the root node of the branch-and-bound tree arXiv:1705.02961v3 [cs.SI] 27 Jun 2017 provides a fractional upper bound solution and our algorithm finds an integral optimal solution after branching. E-mail addresses: (Keisuke Sato) [email protected], (Yoichi Izunaga) [email protected].
    [Show full text]
  • Heuristic Search Viewed As Path Finding in a Graph
    ARTIFICIAL INTELLIGENCE 193 Heuristic Search Viewed as Path Finding in a Graph Ira Pohl IBM Thomas J. Watson Research Center, Yorktown Heights, New York Recommended by E. J. Sandewall ABSTRACT This paper presents a particular model of heuristic search as a path-finding problem in a directed graph. A class of graph-searching procedures is described which uses a heuristic function to guide search. Heuristic functions are estimates of the number of edges that remain to be traversed in reaching a goal node. A number of theoretical results for this model, and the intuition for these results, are presented. They relate the e])~ciency of search to the accuracy of the heuristic function. The results also explore efficiency as a consequence of the reliance or weight placed on the heuristics used. I. Introduction Heuristic search has been one of the important ideas to grow out of artificial intelligence research. It is an ill-defined concept, and has been used as an umbrella for many computational techniques which are hard to classify or analyze. This is beneficial in that it leaves the imagination unfettered to try any technique that works on a complex problem. However, leaving the con. cept vague has meant that the same ideas are rediscovered, often cloaked in other terminology rather than abstracting their essence and understanding the procedure more deeply. Often, analytical results lead to more emcient procedures. Such has been the case in sorting [I] and matrix multiplication [2], and the same is hoped for this development of heuristic search. This paper attempts to present an overview of recent developments in formally characterizing heuristic search.
    [Show full text]
  • Cooperative and Adaptive Algorithms Lecture 6 Allaa (Ella) Hilal, Spring 2017 May, 2017 1 Minute Quiz (Ungraded)
    Cooperative and Adaptive Algorithms Lecture 6 Allaa (Ella) Hilal, Spring 2017 May, 2017 1 Minute Quiz (Ungraded) • Select if these statement are true (T) or false (F): Statement T/F Reason Uniform-cost search is a special case of Breadth- first search Breadth-first search, depth- first search and uniform- cost search are special cases of best- first search. A* is a special case of uniform-cost search. ECE457A, Dr. Allaa Hilal, Spring 2017 2 1 Minute Quiz (Ungraded) • Select if these statement are true (T) or false (F): Statement T/F Reason Uniform-cost search is a special case of Breadth- first F • Breadth- first search is a special case of Uniform- search cost search when all step costs are equal. Breadth-first search, depth- first search and uniform- T • Breadth-first search is best-first search with f(n) = cost search are special cases of best- first search. depth(n); • depth-first search is best-first search with f(n) = - depth(n); • uniform-cost search is best-first search with • f(n) = g(n). A* is a special case of uniform-cost search. F • Uniform-cost search is A* search with h(n) = 0. ECE457A, Dr. Allaa Hilal, Spring 2017 3 Informed Search Strategies Hill Climbing Search ECE457A, Dr. Allaa Hilal, Spring 2017 4 Hill Climbing Search • Tries to improve the efficiency of depth-first. • Informed depth-first algorithm. • An iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solution by incrementally changing a single element of the solution. • It sorts the successors of a node (according to their heuristic values) before adding them to the list to be expanded.
    [Show full text]
  • Backtracking / Branch-And-Bound
    Backtracking / Branch-and-Bound Optimisation problems are problems that have several valid solutions; the challenge is to find an optimal solution. How optimal is defined, depends on the particular problem. Examples of optimisation problems are: Traveling Salesman Problem (TSP). We are given a set of n cities, with the distances between all cities. A traveling salesman, who is currently staying in one of the cities, wants to visit all other cities and then return to his starting point, and he is wondering how to do this. Any tour of all cities would be a valid solution to his problem, but our traveling salesman does not want to waste time: he wants to find a tour that visits all cities and has the smallest possible length of all such tours. So in this case, optimal means: having the smallest possible length. 1-Dimensional Clustering. We are given a sorted list x1; : : : ; xn of n numbers, and an integer k between 1 and n. The problem is to divide the numbers into k subsets of consecutive numbers (clusters) in the best possible way. A valid solution is now a division into k clusters, and an optimal solution is one that has the nicest clusters. We will define this problem more precisely later. Set Partition. We are given a set V of n objects, each having a certain cost, and we want to divide these objects among two people in the fairest possible way. In other words, we are looking for a subdivision of V into two subsets V1 and V2 such that X X cost(v) − cost(v) v2V1 v2V2 is as small as possible.
    [Show full text]
  • Module 5: Backtracking
    Module-5 : Backtracking Contents 1. Backtracking: 3. 0/1Knapsack problem 1.1. General method 3.1. LC Branch and Bound solution 1.2. N-Queens problem 3.2. FIFO Branch and Bound solution 1.3. Sum of subsets problem 4. NP-Complete and NP-Hard problems 1.4. Graph coloring 4.1. Basic concepts 1.5. Hamiltonian cycles 4.2. Non-deterministic algorithms 2. Branch and Bound: 4.3. P, NP, NP-Complete, and NP-Hard 2.1. Assignment Problem, classes 2.2. Travelling Sales Person problem Module 5: Backtracking 1. Backtracking Some problems can be solved, by exhaustive search. The exhaustive-search technique suggests generating all candidate solutions and then identifying the one (or the ones) with a desired property. Backtracking is a more intelligent variation of this approach. The principal idea is to construct solutions one component at a time and evaluate such partially constructed candidates as follows. If a partially constructed solution can be developed further without violating the problem’s constraints, it is done by taking the first remaining legitimate option for the next component. If there is no legitimate option for the next component, no alternatives for any remaining component need to be considered. In this case, the algorithm backtracks to replace the last component of the partially constructed solution with its next option. It is convenient to implement this kind of processing by constructing a tree of choices being made, called the state-space tree. Its root represents an initial state before the search for a solution begins. The nodes of the first level in the tree represent the choices made for the first component of a solution; the nodes of the second level represent the choices for the second component, and soon.
    [Show full text]
  • Exploiting the Power of Local Search in a Branch and Bound Algorithm for Job Shop Scheduling Matthew J
    Exploiting the Power of Local Search in a Branch and Bound Algorithm for Job Shop Scheduling Matthew J. Streeter1 and Stephen F. Smith2 Computer Science Department and Center for the Neural Basis of Cognition1 and The Robotics Institute2 Carnegie Mellon University Pittsburgh, PA 15213 {matts, sfs}@cs.cmu.edu Abstract nodes in the branch and bound search tree. This paper presents three techniques for using an iter- 2. Branch ordering. In practice, a near-optimal solution to ated local search algorithm to improve the performance an optimization problem will often have many attributes of a state-of-the-art branch and bound algorithm for job (i.e., assignments of values to variables) in common with shop scheduling. We use iterated local search to obtain an optimal solution. In this case, the heuristic ordering (i) sharpened upper bounds, (ii) an improved branch- of branches can be improved by giving preference to a ordering heuristic, and (iii) and improved variable- branch that is consistent with the near-optimal solution. selection heuristic. On randomly-generated instances, our hybrid of iterated local search and branch and bound 3. Variable selection. The heuristic solutions used for vari- outperforms either algorithm in isolation by more than able selection at each node of the search tree can be im- an order of magnitude, where performance is measured proved by local search. by the median amount of time required to find a globally optimal schedule. We also demonstrate performance We demonstrate the power of these techniques on the job gains on benchmark instances from the OR library. shop scheduling problem, by hybridizing the I-JAR iter- ated local search algorithm of Watson el al.
    [Show full text]
  • An Evolutionary Algorithm for Minimizing Multimodal Functions
    An Evolutionary Algorithm for Minimizing Multimodal Functions D.G. Sotiropoulos, V.P. Plagianakos, and M.N. Vrahatis Department of Mathematics, University of Patras, GR–261.10 Patras, Greece. University of Patras Artificial Intelligence Research Center–UPAIRC. e–mail: {dgs,vpp,vrahatis}@math.upatras.gr Abstract—A new evolutionary algorithm for are precluded. In such cases direct search approaches the global optimization of multimodal functions are the methods of choice. is presented. The algorithm is essentially a par- allel direct search method which maintains a If the objective function is unimodal in the search populations of individuals and utilizes an evo- domain, one can choose among many good alterna- lution operator to evolve them. This operator tives. Some of the available minimization methods in- has two functions. Firstly, to exploit the search volve only function values, such as those of Hook and space as much as possible, and secondly to form Jeeves [2] and Nelder and Mead [5]. However, if the an improved population for the next generation. objective function is multimodal, the number of avail- This operator makes the algorithm to rapidly able algorithms is reduced to very few. In this case, converge to the global optimum of various diffi- the algorithms quoted above tend to stop at the first cult multimodal test functions. minimum encountered, and cannot be used easily for finding the global one. Index Terms—Global optimization, derivative free methods, evolutionary algorithms, direct Search algorithms which enhance the exploration of the search methods. feasible region through the use of a population, such as Genetic Algorithms (see, [4]), and probabilistic search techniques such as Simulated Annealing (see, [1, 7]), I.
    [Show full text]
  • Branch-And-Price: Column Generation for Solving Huge Integer Programs ,Y
    BranchandPrice Column Generation for y Solving Huge Integer Programs Cynthia Barnhart Ellis L Johnson George L Nemhauser Martin WPSavelsb ergh Pamela H Vance School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta GA Abstract We discuss formulations of integer programs with a huge number of variables and their solution by column generation metho ds ie implicit pricing of nonbasic variables to generate new columns or to prove LP optimality at a no de of the branch andb ound tree We present classes of mo dels for whichthisapproach decomp oses the problem provides tighter LP relaxations and eliminates symmetryWethen discuss computational issues and implementation of column generation branchand b ound algorithms including sp ecial branching rules and ecientways to solvethe LP relaxation February Revised May Revised January Intro duction The successful solution of largescale mixed integer programming MIP problems re quires formulations whose linear programming LP relaxations give a go o d approxima Currently at MIT Currently at Auburn University This research has b een supp orted by the following grants and contracts NSF SES NSF and AFORS DDM NSF DDM NSF DMI and IBM MHV y An abbreviated and unrefereed version of this pap er app eared in Barnhart et al tion to the convex hull of feasible solutions In the last decade a great deal of attention has b een given to the branchandcut approach to solving MIPs Homan and Padb erg and Nemhauser and Wolsey give general exp ositions of this metho dology The basic
    [Show full text]
  • Hybridization of Interval Methods and Evolutionary Algorithms for Solving Difficult Optimization Problems
    THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Institut National Polytechnique de Toulouse (INP Toulouse) Présentée et soutenue le January 27, 2015 par : Charlie Vanaret Hybridization of interval methods and evolutionary algorithms for solving difficult optimization problems JURY Nicolas Durand ENAC Directeur de thèse Jean-Baptiste Gotteland ENAC Co-encadrant de thèse El-Ghazali Talbi Université de Lille Rapporteur Gilles Trombettoni Université de Montpellier Rapporteur Jean-Marc Alliot IRIT Examinateur Jin-Kao Hao Université d’Angers Examinateur arXiv:2001.11465v1 [math.NA] 30 Jan 2020 Thomas Schiex INRA Toulouse Examinateur Marc Schoenauer INRIA Saclay Examinateur École doctorale et spécialité : MITT : Domaine STIC : Intelligence Artificielle Unité de Recherche : IRIT-APO (UMR 5505) Abstract Reliable global optimization is dedicated to finding a global minimum in the presence of rounding errors. The only approaches for achieving a numerical proof of optimality in global optimization are interval-based methods that interleave branching of the search-space and pruning of the subdomains that cannot contain an optimal solution. The exhaustive interval branch and bound methods have been widely studied since the 1960s and have benefitted from the development of refutation methods and filtering algorithms, stemming from the interval analysis and interval constraint programming communities. It is of the utmost importance: i) to compute sharp enclosures of the objective function and the constraints on a given subdomain; ii) to find a good approximation (an upper bound) of the global minimum. State-of-the-art solvers are generally integrative methods, that is they embed local optimization algorithms to compute a good upper bound of the global minimum over each subspace.
    [Show full text]
  • Scale up Bayesian Networks Learning Dissertation Proposal
    Scale Up Bayesian Networks Learning Dissertation Proposal Xiannian Fan [email protected] March 2015 Abstract Bayesian networks are widely used graphical models which represent uncertain rela- tions between the random variables in a domain compactly and intuitively. The first step of applying Bayesian networks to real-word problems typically requires building the network structure. Among others, optimal structure learning via score-and-search has become an active research topic in recent years. In this context, a scoring function is used to measure the goodness of fit of a structure to the data, and the goal is to find the structure which optimizes the scoring function. The problem has been shown to be NP-hard. This pro- posal focuses on scaling up structure learning algorithms. Two potential directions are preliminarily explored. One is to tighten the bounds; we tighten the lower bound by us- ing more informed variable groupings when creating the heuristics. and tighten the upper bound using anytime learning algorithm. The other is to prune the search space by extract- ing constraints directly from data. Our preliminary results show that the two directions can significantly improve the efficiency and scalability of heuristics search-based structure learning algorithms, which gives us strong reasons to follow these directions in the future. Professor: Dr. Changhe Yuan Signature: Date: 03-11-2015 Professor: Dr. Liang Huang Signature: Date: 03-11-2015 Professor: Dr. Andrew Rosenberg Signature: Date: 03-11-2015 Professor: Dr.John Paisley Signature: Date: 03-11-2015 Advisor: Dr. Changhe Yuan 1 Contents 1 Introduction 3 1.1 Notation and Termimology .
    [Show full text]
  • SI 335, Unit 5: Graph Search
    SI 335, Unit 5: Graph Search Daniel S. Roche ([email protected]) Spring 2016 1 Graphs NOTE: All this section should be review from Data Structures, IC 312. Feel free to skip to the next section of the notes if you feel pretty solid on this. Graphs (sometimes called “networks”) are an extremely useful and versatile way of representing information. At its core, a graph is a collection of items (the nodes) and relationships between them (edges). Here is a very small sampling of different kinds of information that can be represented with a graph: • Cities in a country or continent and the highways that connect them. Can be used by services like Google Maps to tell you the fastest way to get somewhere. • People in an organization and the relationships between them • (“boss”, “acquaintance”, “friend”, etc.). • Computers and servers in a network and the connections between them. Problems we might ask are how to get a message from one machine to another and how to best configure the network for redundancy if one machine goes down. • Web pages and the hyperlinks between them • Dependencies in a Makefile • Scheduling tasks given some constraints (like “A has to happen after B” or “A and B can’t happen simultaneously”.) Because of this, graphs rightfully belong to the class of basic computational structures alongside other things like numbers, lists, and collections. We’ll examine a few of the most important algorithms and problems with graphs but there are many, many more that arise in all kinds of varied circumstances. 1.1 Definitions and Terminology A graph G = (V, E) is a tuple of “nodes” or “vertices” in the set V, and “edges” in the set E that connect the vertices.
    [Show full text]
  • A Branch-And-Price Algorithm for Combined Location and Routing Problems Under Capacity Restrictions
    A Branch-and-Price Algorithm for Combined Location and Routing Problems Under Capacity Restrictions Z. Akca ∗ R.T. Berger † T.K Ralphs ‡ September 17, 2008 Abstract We investigate the problem of simultaneously determining the location of facilities and the design of vehicle routes to serve customer demands under vehicle and facility capacity restrictions. We present a set-partitioning-based formulation of the problem and study the relationship between this formulation and the graph-based formulations that have been used in previous studies of this problem. We describe a branch-and-price algorithm based on the set-partitioning formulation and discuss computational experi- ence with both exact and heuristic variants of this algorithm. 1 Introduction The design of a distribution system begins with the questions of where to locate the facilities and how to allo- cate customers to the selected facilities. These questions can be answered using location-allocation models, which are based on the assumption that customers are served individually on out-and-back routes. How- ever, when customers have demands that are less-than-truckload and thus can receive service from routes making multiple stops, the assumption of individual routes will not accurately capture the transportation cost. Therefore, the integration of location-allocation and routing decisions may yield more accurate and cost-effective solutions. In this paper, we investigate the so-called location and routing problem (LRP). Given a set of candidate facility locations and a set of customer locations, the objective of the LRP is to determine the number and location of facilities and construct a set of vehicle routes from facilities to customers in such a way as to minimize total system cost.
    [Show full text]