Article (Published Version)

Total Page:16

File Type:pdf, Size:1020Kb

Article (Published Version) Article Mitochondrial Genome of Savalia savaglia (Cnidaria, Hexacorallia) and Early Metazoan Phylogeny SINNIGER, Frédéric, CHEVALDONNÉ, P., PAWLOWSKI, Jan Wojciech Abstract Mitochondrial genomes have recently become widely used in animal phylogeny, mainly to infer the relationships between vertebrates and other bilaterians. However, only 11 of 723 complete mitochondrial genomes available in the public databases are of early metazoans, including cnidarians (Anthozoa, mainly Scleractinia) and sponges. Although some cnidarians (Medusozoa) are known to possess atypical linear mitochondrial DNA, the anthozoan mitochondrial genome is circular and its organization is similar to that of other metazoans. Because the phylogenetic relationships among Anthozoa as well as their relation to other early metazoans still need to be clarified, we tested whether sequencing the complete mitochondrial genome of Savalia savaglia, an anthozoan belonging to the order Zoantharia (=Zoanthidea), could be useful to infer such relationships. Compared to other anthozoans, S. savaglia’s genome is unusually long (20,766 bp) due to the presence of several noncoding intergenic regions (3691 bp). The genome contains all 13 protein coding genes commonly found in metazoans, but like other Anthozoa it lacks most of the tRNAs. [...] Reference SINNIGER, Frédéric, CHEVALDONNÉ, P., PAWLOWSKI, Jan Wojciech. Mitochondrial Genome of Savalia savaglia (Cnidaria, Hexacorallia) and Early Metazoan Phylogeny. Journal of Molecular Evolution, 2007, vol. 64, no. 2, p. 196-203 DOI : 10.1007/s00239-006-0015-0 Available at: http://archive-ouverte.unige.ch/unige:117868 Disclaimer: layout of this document may differ from the published version. 1 / 1 J Mol Evol (2007) 64:196–203 DOI: 10.1007/s00239-006-0015-0 Mitochondrial Genome of Savalia savaglia (Cnidaria, Hexacorallia) and Early Metazoan Phylogeny F. Sinniger,1,2 P. Chevaldonne´,2 J. Pawlowski1 1 Department of Zoology and Animal Biology, Molecular Systematic Group, Science III, University of Geneva, 30 quai Ernest-Ansermet, 1211 Gene` ve 4, Switzerland 2 Centre d’Oce´anologie de Marseille, UMR CNRS 6540 DIMAR, Universite´de la Me´diterrane´e, Station Marine d’Endoume, rue de la Batterie des Lions, 13007 Marseille, France Received: 23 January 2006 / Accepted: 24 October 2006 [Reviewing Editor: Dr. Axel Meyer] Abstract. Mitochondrial genomes have recently tionships suggested between Zoantharia and Actin- become widely used in animal phylogeny, mainly to iaria are reinforced by strong similarities in their gene infer the relationships between vertebrates and other order and the presence of similar introns in the COI bilaterians. However, only 11 of 723 complete mito- and ND5 genes. Our study suggests that mitochon- chondrial genomes available in the public databases drial genomes can be a source of potentially valuable are of early metazoans, including cnidarians (An- information on the phylogeny of Hexacorallia and thozoa, mainly Scleractinia) and sponges. Although may provide new insights into the evolution of early some cnidarians (Medusozoa) are known to possess metazoans. atypical linear mitochondrial DNA, the anthozoan mitochondrial genome is circular and its organization Key words: Mitochondrial genome — Early meta- is similar to that of other metazoans. Because the zoan — Cnidaria — Anthozoa — Hexacorallia — phylogenetic relationships among Anthozoa as well Zoantharia as their relation to other early metazoans still need to be clarified, we tested whether sequencing the com- plete mitochondrial genome of Savalia savaglia,an anthozoan belonging to the order Zoantharia (=Zoanthidea), could be useful to infer such rela- Introduction tionships. Compared to other anthozoans, S. sava- glia’s genome is unusually long (20,766 bp) due to the Mitochondrial genomes are commonly used to infer presence of several noncoding intergenic regions metazoan phylogeny, their haploid status and their (3691 bp). The genome contains all 13 protein coding small size being the most important advantages as genes commonly found in metazoans, but like other phylogenetic markers. Seven hundred twenty-three Anthozoa it lacks most of the tRNAs. Phylogenetic complete mitochondrial genomes are available in the analyses of S. savaglia mitochondrial sequences show public databases (GenBank, January 2006) and this Zoantharia branching closely to other Hexacorallia, number is rapidly increasing. DNA sequences of either as a sister group to Actiniaria or as a sister tRNA, rRNA, and protein coding genes and inferred group to Actiniaria and Scleractinia. The close rela- amino acid sequences of protein coding genes as well as gene order provide different types of information useful at different taxonomic levels (Boore 1999). If Correspondence to: F. Sinniger; email: frederic.sinniger@zoo. mitochondrial DNA sequences are widely used for unige.ch species identification (Herbert et al. 2004; Ward et al. 197 2005) and for inferring relationships below the family been extensively used in cnidarian phylogeny but do level, rearrangements in gene order are mainly not provide much information at the species level informative for relationships between phyla (Jennings (Romano and Palumbi 1997; Sanchez et al. 2003; and Halanych 2005). However, such rearrangements Sinniger et al. 2005). Among Octocorallia the effi- have in some cases also been used to infer phylogeny ciency of mitochondrial markers is limited to the within phyla (Dreyer and Steiner 2004) and even genus level (McFadden et al. 2004) despite msh1 and within families (Mabuchi et al. 2004). some ND subunits being more variable and useful in Among the metazoan mitochondrial genomes se- solving phylogeny within suborders (Sanchez et al. quenced up until now, only 11 come from diploblastic 2004). organisms. Three of these mitochondrial genomes To increase taxon sampling of cnidarian mito- belong to demosponges: Tethya actinia, Geodia nep- chondrial genomes and to test their possible interest tuni (Lavrov et al. 2005), and Axinella corrugata for phylogenetic use, here we have sequenced the (Lavrov and Lang 2005). The other genomes belong complete mitochondrial genome of Savalia savaglia,a to anthozoans (Cnidaria), including the soft coral species belonging to the hexacorallian order Zoan- Sarcophyton glaucum (Octocorallia, Alcyonaria) tharia (=Zoanthidea, Zoanthiniaria). Phylogenetic (Beaton et al. 1998), the sea anemone Metridium se- analyses of obtained sequences confirm the mono- nile (Hexacorallia, Actiniaria) (Beagley et al. 1998), phyly of Hexacorallia and give insights into the and the six hard corals (Hexacorallia, Scleractinia). relationships among three orders (of a total of six) The scleratinian genomes include three species (Zoantharia, Actiniaria, Scleractinia) belonging to belonging to the family Acroporidae—Acropora ten- this class. In view of our data, the gene rearrange- uis (Van Oppen et al. 2002), Anacropora matthai, and ments in mitochondrial genomes provide important Montipora cactus (Tseng et al. 2005)—and three phylogenetic information at this taxonomic level. others belonging to the Montastrea annularis species complex (Fukami and Knowlton 2005). In addition to completely sequenced mitochondrial genomes, Materials and Methods there is also information on the order of genes in the mitochondrial genome of Renilla kollikeri (Octocor- Sampling and DNA Extraction allia, Pennatulacea) (Beagley et al. 1995) and Savalia savaglia (formerly in the genus Gerardia) was collected regarding the organization of the genome in Acropora from a colony originating from the Embiez Islands (France) and nasuta (Fukami et al. 2000). All these data show that, artificially implanted and reproduced on a small island off Mar- in opposition to Hydrozoa and other Medusozoa, seille (France). It is the only zoantharian (=zoanthid) genus to which possess linear mitochondrial genomes in one or secrete its own skeleton covering the substrate (usually gorgonians more parts (Bridge et al. 1992), all anthozoans se- or antipatharians). S. savaglia is found in the Mediterranean Sea at depths ranging from 30 to more than 100 m. The tissues were fixed quenced so far have circular mitochondrial genomes and conserved in 70% ethanol and two DNA extractions were like other metazoans. performed using the DNeasy Plant Minikit (Qiagen). To avoid The acquisition of the first complete mitochondrial contamination from epizoic organisms, DNA was extracted from a genomes of cnidarians and sponges prompted inves- fragment of mesenteria carefully isolated under the microscope. tigation of the utility of their use in inferring early Genomic DNA obtained was used to perform PCR amplifications. The absence of contamination was confirmed by sequence analyses, metazoan phylogeny. Until recently, the phylogenetic as none of the sequences obtained were similar to any potential study of the diploblastic taxa at higher taxonomic prey, parasite, epibiont, or other cnidarian species present in the levels was based mostly on the sequences of 28S and area. Moreover, the overlap between new sequences and previously 18S rDNA (Medina et al. 2001; Collins 2002; Bor- obtained zoantharian sequences (COI, 12S, 16S) warranted the chiellini et al. 2004). Despite such studies, different homogeneity of genomic material. phylogenetic questions concerning the relationships between diploblasts and bilaterians and relationships PCR Amplification and Sequencing within different diploblastic taxa remain partially or completely unanswered. Relationships at the base of PCR conditions were as
Recommended publications
  • Di Camillo Et Al 2017
    This is a post-peer-review, pre-copyedit version of an article published in Biodiversity and Conservation on 23 December 2017 (First Online). The final authenticated version is available online at: https://doi.org/10.1007/s10531-017-1492-8 https://link.springer.com/article/10.1007%2Fs10531-017-1492-8 An embargo period of 12 months applies to this Journal. This paper has received funding from the European Union (EU)’s H2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 643712 to the project Green Bubbles RISE for sustainable diving (Green Bubbles). This paper reflects only the authors’ view. The Research Executive Agency is not responsible for any use that may be made of the information it contains. © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 AUTHORS' ACCEPTED MANUSCRIPT Building a baseline for habitat-forming corals by a multi-source approach, including Web Ecological Knowledge - Cristina G Di Camillo, Department of Life and Environmental Sciences, Marche Polytechnic University, CoNISMa, Ancona, Italy, [email protected] - Massimo Ponti, Department of Biological, Geological and Environmental Sciences and Interdepartmental Research Centre for Environmental SciencesUniversity of Bologna, CoNISMa, Ravenna, Italy - Giorgio Bavestrello, Department of Earth, Environment and Life Sciences, University of Genoa, CoNISMa, Genoa, Italy - Maja Krzelj, Department of Marine Studies, University of Split, Split, Croatia - Carlo Cerrano, Department of Life and Environmental Sciences, Marche Polytechnic University, CoNISMa, Ancona, Italy Received: 12 January 2017 Revised: 10 December 2017 Accepted: 14 December 2017 First online: 23 December 2017 Cite as: Di Camillo, C.G., Ponti, M., Bavestrello, G.
    [Show full text]
  • Ecological Mapping and Data Quality Assessment for the Needs of Ecosystem-Based Marine Spatial Management: Case Study Greek Ionian Sea and the Adjacent Gulfs
    Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Ecological mapping and data quality assessment for the needs of ecosystem-based marine spatial management: case study Greek Ionian Sea and the adjacent gulfs Y. ISSARIS1,2, S. KATSANEVAKIS1,3, M. PANTAZI1, V. VASSILOPOULOU1, P. PANAYOTIDIS4, S. KAVADAS1, A. KOKKALI1, M. SALOMIDI4, A. FRANTZIS5, A. PANOU6, D. DAMALAS1,7, D. KLAOUDATOS1, D. SAKELLARIOU4, V. DRAKOPOULOU4, C. KYRIAKIDOU4, I. MAINA1, J. FRIC8, C. SMITH1, S. GIAKOUMI1 and G. KARRIS9 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, Ag. Kosmas, Greece 2 Sector of Zoology and Marine Biology, Department of Biology, University of Athens, Zografos, Greece 3 European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy 4 Institute of Oceanography, Hellenic Centre for Marine Research, Anavyssos, Greece 5 Pelagos Cetacean Research Institute, Vouliagmeni, Greece 6 Archipelagos – environment and development, Kifissia, Greece 7 European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, Ispra, Italy 8 Hellenic Ornithological Society, Athens, Greece 9 Department of Environmental Technology and Ecology, TEI of the Ionian Islands, Zakynthos Island, Greece Corresponding author: [email protected] Received: 30 April 2012; Accepted: 2 November 2012; Published on line: 19 November 2012 Abstract Mapping of ecosystem components (natural and socioeconomic) is a prerequisite for ecosystem-based marine spatial manage- ment (EB-MSM). To initiate the process of EB-MSM in the Greek Ionian Sea and the adjacent gulfs, the main relevant ecosystem components were mapped based on existing spatial information and expert judgment.
    [Show full text]
  • Updated Classification of Benthic Marine Habitat Types for The
    Updated Classification of Benthic Marine Habitat Types for the Mediterranean Region TUNISIA - 2019 Legal notice: The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Specially Protected Areas Regional Activity Centre (SPA/RAC) and UN Environment/Mediterranean Action Plan (MAP) and those of the Lebanese Ministry of Environment concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. This publication was produced with the fi nancial support of the European Union in the framework of the MedMPA Network Project. Its contents are the sole responsibility of SPA/RAC and do not necessarily refl ect the views of the European Union. Copyright : All property rights of texts and content of different types of this publication belong to SPA/RAC. Reproduction of these texts and contents, in whole or in part, and in any form, is prohibited without prior written permission from SPA/RAC, except for educational and other non-commercial purposes, provided that the source is fully acknowledged. © 2019 - United Nations Environment Programme Mediterranean Action Plan Specially Protected Areas Regional Activity Centre (SPA/RAC) Boulevard du Leader Yasser Arafat B.P. 337 1080 Tunis Cedex - Tunisia. [email protected] For bibliographic purposes, this document may be cited as: SPA/RAC–UN Environment/MAP, 2019: Updated Classifi cation of Benthic Marine Habitat Types for the Mediterranean Region Layout : Atef OUERGHI Cover photos credit: © SPA/RAC, University of Seville, University of Alicante, Trainito E.
    [Show full text]
  • Composition and Abundance of Octocorals in the Sea of Marmara, Where the Mediterranean Meets the Black Sea
    SCIENTIA MARINA 79(1) March 2015, 125-135, Barcelona (Spain) ISSN-L: 0214-8358 doi: http://dx.doi.org/10.3989/scimar.04120.09A Composition and abundance of octocorals in the Sea of Marmara, where the Mediterranean meets the Black Sea Eda N. Topçu 1,2, Bayram Öztürk 1,2 1 Istanbul University Fisheries Faculty, Ordu cad No 200 Laleli, 34470 Istanbul, Turkey. E-mail: [email protected] 2 Turkish Marine Research Foundation, No 10, Beykoz, 81650, Istanbul, Turkey. Summary: Species composition and abundance of octocoral assemblages were investigated in the Sea of Marmara, which forms the connection between the Mediterranean and the Black Seas, two semi-enclosed seas with peculiar oceanographic conditions. Fourteen octocoral species were collected in the saline layer of the Marmara Sea (20-40 m), with a mean coral abundance of 5.21±5.11 colonies m–2 (mean ± SD) calculated from a total of 1390 colonies counted in transects. In spite of severe anthropogenic disturbances, dense assemblages of corals/gorgonians were observed during this study. The coral- ligenous communities—one of the most valuable structures of the Mediterranean Sea—harbored either Eunicella cavolini or Paramuricea macrospina as the dominant gorgonian in the Marmara Sea. Furthermore, the gorgonian assemblages of the Marmara Sea differed from those of the Mediterranean in their high abundance of P. macrospina and Spinimuricea klavereni, two species rarely encountered in the Mediterranean Sea at the studied depth range. The factors behind the observed differ- ences are discussed in regard to the particular oceanographic conditions of the Marmara Sea. Finally, we revised the main threats to corals/gorgonians in the Marmara Sea and provided some insights on management recommendations for coral conservation in this area.
    [Show full text]
  • Deepseacorals.Pdf
    Protection of Deep-Sea Corals from Physical Damage by Fishing Gear under the MSA Deep Sea Coral Discretionary Authority Purpose The National Oceanic and Atmospheric Administration (NOAA) is a steward of the nation’s living marine resources. This document will assist NOAA offices and the regional fishery management councils (Councils)1 when developing protective measures for deep-sea corals under section 303(b)(2)(B) of the Magnuson-Stevens Fishery Conservation and Management Act (MSA).2 Section 303(b)(2) provides that any fishery management plan (FMP) which is prepared by any Council or the Secretary, with respect to any fishery, may: A) designate zones where, and periods when, fishing shall be limited, or shall not be permitted, or shall be permitted only by specified types of fishing vessels or with specified types and quantities of fishing gear; B) designate such zones in areas where deep sea corals are identified under section 408 [the Deep Sea Coral Research and Technology Program], to protect deep sea corals from physical damage from fishing gear or to prevent loss or damage to such fishing gear from interactions with deep sea corals, after considering long-term sustainable uses of fishery resources in such areas. 16 U.S.C. § 1853(b)(2)(A)-(B). We encourage use of this discretionary authority to advance the agency’s and Councils’ conservation objectives. NOAA’s Strategic Plan for Deep-Sea Coral and Sponge Ecosystems seeks to ensure that fisheries that may interact with known and likely deep-sea coral ecosystems are identified and monitored and that such ecosystems are protected from the impacts of fishing gear (see Figure 1).3 This document is consistent with those policy goals.
    [Show full text]
  • Integralni Program Monitoringa Crna Gora
    Integralni program monitoringa Crna Gora Impresum Glavna koordinatorka: Nada Krstulović Koordinacija projektnih Ivana Stojanović, Marina Marković, Anis Zarrouk, Ivan Sekovski, Milena Bataković, Ivana Mitrović, Daniel Cebrian timova: Autori: EO1: Vesna Mačić, Slavica Petović i Ivan Guala (bentoski habitati); Mirko Đurović, Zdravko Ikica, Draško Holcer i Yakup Kaska (morski sisari i morske kornjače), Darko Saveljić i Marco Zenatello (morske ptice); Nada Krstulović, Dragana Drakulović i Branka Pestorić (plankton) EO2: Vesna Mačić, Argyro Zenetos EO3: Aleksandar Joksimović EO5: Robert Precali, Danijela Šuković, Jelena Rešetar, Vladimir Živković EO7: Luka Čalić, Radovan Kandić, Olivier Brivois EO8: Željka Čurović, Ivan Sekovski EO9: Danijela Šuković, Jelena Knežević, Carlos Guitart, Vladimir Živković, Aleksandra Ivanović, Darinka Joksimović EO10: Milica Mandić, Christos Ioakemidis Karte: Robert Precali Uređivanje: Dizajn naslovne strane: swim2birds.co.uk Grafički dizajn: Ljudomat Prevod: Mia Laušević Fotografija naslovne strane: Acanthella cannabina, Dražin vrt (Crna Gora) © Egidio Trainito Upotrijebljene odrednice i materijali prikazani u ovom dokumentu ne izražavaju mišljenje UNEP/MAP-a u pogledu pravnog statusa države, teritorije, grada ili oblasti, ili njihovih organa vlasti, ili u pogledu linija razgraničenja ili državnih granica. Ovu studiju izradili su PAP/RAC, SPA/RAC, UNEP/MAP i Ministarstvo ekologije, prostornog planiranja i urbanizma Crne Gore u okviru "GEF Adriatik" projekta, uz podršku Globalnog fonda za životnu sredinu (GEF).
    [Show full text]
  • Metabolomic Profiling Reveals Deep Chemical Divergence Between Two
    OPEN Metabolomic profiling reveals deep SUBJECT AREAS: chemical divergence between two METABOLOMICS CHEMICAL ECOLOGY morphotypes of the zoanthid BIODIVERSITY MASS SPECTROMETRY Parazoanthus axinellae Nadja Cachet1, Gre´gory Genta-Jouve1,2, Julijana Ivanisevic1,3, Pierre Chevaldonne´3, Fre´de´ric Sinniger4,5, Received Ge´rald Culioli1,6, Thierry Pe´rez3 & Olivier P. Thomas1,3 10 October 2014 Accepted 1Institut de Chimie de Nice - EEIC, UMR 7272 CNRS, Universite´ de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France, 8 January 2015 2Laboratoire de Pharmacognosie et de Chimie des Substances Naturelles, UMR CNRS 8638 COMETE, Universite´ Paris Descartes, 4 Avenue de l’Observatoire 75006 Paris, France, 3Institut Me´diterrane´en de Biodiversite´ et d’Ecologie Marine et Continentale, UMR Published 7263 CNRS, IRD, Aix Marseille Universite´, Avignon Universite´, Station Marine d’Endoume, Rue Batterie des Lions, 13007 6 February 2015 Marseille, France, 4Japan Agency for Marine-Earth Science and Technology, 224-3 Aza-Toyohara, Nago City, Okinawa 905- 2172, Japan, 5Tropical Biosphere Reseach Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan, 6MAPIEM, EA 4323 Universite´ de Toulon, 83957 La Garde, France. Correspondence and requests for materials Metabolomics has recently proven its usefulness as complementary tool to traditional morphological and should be addressed to genetic analyses for the classification of marine invertebrates. Among the metabolite-rich cnidarian order T.P. (thierry.perez@ Zoantharia, Parazoanthus is a polyphyletic genus whose systematics and phylogeny remain controversial. imbe.fr) or O.P.T. Within this genus, one of the most studied species, Parazoanthus axinellae is prominent in rocky shallow (olivier.thomas@unice. waters of the Mediterranean Sea and the NE Atlantic Ocean.
    [Show full text]
  • Cnidaria: Hexacorallia: Zoantharia
    ARTICLE IN PRESS Organisms, Diversity & Evolution 9 (2009) 23–36 www.elsevier.de/ode Zoanthids (Cnidaria: Hexacorallia: Zoantharia) from shallow waters of the southern Chilean fjord region, with descriptions of a new genus and two new species Frederic Sinnigera,Ã, Verena Ha¨ussermannb,c aDepartment of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan bFundacio´n Huinay, Puerto Montt, Chile cEscuela de Ciencias del Mar, Facultad de Recursos Naturales, Pontificia Universidad Cato´lica de Valparaı´so, Avda. Brazil 2950, Valparaı´so, Chile Received 27 June 2008; accepted 25 September 2008 Abstract The taxonomy of the order Zoantharia (¼ Zoanthidea ¼ Zoanthiniaria) is greatly hampered by the paucity of diagnostic morphological features. To facilitate discrimination between similar zoanthids, a combination of morphological and molecular analyses is applied here. The three most abundant zoanthid species in shallow waters of the southern Chilean fjord region are described. Comparison with other zoanthids using molecular markers reveals that two of them are new to science; these are described as Mesozoanthus fossii gen. n., sp. n. and Epizoanthus fiordicus sp. n. Their representatives grow on rocky substratum and do not live in symbiosis with demosponges. In the less abundant M. fossii, animals are greyish in colour and resemble members of Parazoanthus in growth form. Individual polyps can be up to 35 mm long. The more abundant E. fiordicus are also greyish; the polyps arise from thin stolons and reach only 12 mm in length. The third species studied is Parazoanthus elongatus McMurrich, 1904. For these three Chilean zoanthid species, in-situ photographs are presented as well as information on distribution, habitat and associated species.
    [Show full text]
  • Cnidarian Phylogenetic Relationships As Revealed by Mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1
    Kayal et al. BMC Evolutionary Biology 2013, 13:5 http://www.biomedcentral.com/1471-2148/13/5 RESEARCH ARTICLE Open Access Cnidarian phylogenetic relationships as revealed by mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1 Abstract Background: Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results: We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions: Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum.
    [Show full text]
  • Hourigan TF, Etnoyer PJ, Cairns SD (2017) Introduction to the State of Deep‐Sea Coral and Sponge Ecosystems of the United States
    Introduction to the State of Deep-Sea Coral and Sponge Ecosystems of the United States Chapter 1 in The State of Deep‐Sea Coral and Sponge Ecosystems of the United States Report Recommended citation: Hourigan TF, Etnoyer PJ, Cairns SD (2017) Introduction to the State of Deep‐Sea Coral and Sponge Ecosystems of the United States. In: Hourigan TF, Etnoyer, PJ, Cairns, SD (eds.). The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 38 p. Available online: http://deepseacoraldata.noaa.gov/library. Iridogorgia soft coral with squat lobsters in the northwestern Gulf of Mexico. Courtesy of the NOAA Office of Ocean xii Exploration and Research. INTRODUCTION TO THE STATE OF DEEP‐SEA CORAL AND SPONGE ECOSYSTEMS OF THE UNITED STATES INTRODUCTION TO THE Thomas F. STATE OF DEEP-SEA Hourigan1*, Peter J. CORAL AND SPONGE Etnoyer2, and ECOSYSTEMS OF THE Stephen D. Cairns3 UNITED STATES 1 NOAA Deep Sea Coral Research and Technology Program, Office of Habitat Conservation, Silver I. Introduction Spring, MD * Corresponding Author: Large, long‐lived, sessile organisms contribute structural [email protected] complexity to seafloor habitats and play an important role in marine ecosystems. In deep or cold oceanic waters, corals and 2 NOAA Center for Coastal sponges are the most important organisms forming such biogenic Monitoring and Assessment, National habitats (Roberts et al. 2009, Buhl‐Mortensen et al. 2010, Hogg et al. Centers for Coastal Ocean 2010, Rossi et al. 2017). They increase the physical heterogeneity of Science, Charleston, SC habitat, provide refuge and substrate, increase the number and 3 National Museum of availability of micro‐habitats for other organisms, and thereby Natural History, create hotspots of biological diversity in the deep sea.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Radiocarbon-Based Ages and Growth Rates of Hawaiian Deep-Sea Corals
    MARINE ECOLOGY PROGRESS SERIES Vol. 327: 1–14, 2006 Published December 7 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals E. Brendan Roark1, 4,*, Thomas P. Guilderson2, 3, Robert B. Dunbar4, B. Lynn Ingram1, 5 1Department of Geography, University of California, Berkeley, California 94720-4740, USA 2Center for Accelerator Mass Spectrometry, LLNL, L-397 7000 East Avenue, Livermore, California 94551, USA 3Department of Ocean Sciences and Institute of Marine Sciences, University of California, Santa Cruz, California 95064, USA 4Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, USA 5Department of Earth and Planetary Science, University of California, Berkeley, California 94720-4767, USA ABSTRACT: The radial growth rates and ages of 3 differ- ent groups of Hawaiian deep-sea ‘corals’ were deter- mined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima were collected from 450 ± 40 m depth at the Makapuu deep-sea coral bed off the southeast coast of Oahu, Hawaii, USA, using a submersible vessel (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m depth off Lahaina, Maui, Hawaii. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using ‘bomb 14C’ time markers we calculated radial growth rates of ~170 µm yr–1 and ages of 67 to 71 yr for specimens of C. secundum up to 28 cm tall. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons, and la- bile particulate organic carbon (POC) is their primary Radiocarbon dating shows that deep-sea corals grow more source of architectural carbon.
    [Show full text]