Thermal Protection Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ceramic Matrix Composites with Nano Technology–An Overview
International Review of Applied Engineering Research. ISSN 2248-9967 Volume 4, Number 2 (2014), pp. 99-102 © Research India Publications http://www.ripublication.com/iraer.htm Ceramic Matrix Composites with Nano Technology–An Overview Saubhagya Sharma, Samresh Kumar Shashi and Vikram Tomar Department of Material Science & Nano Technology, University of Petroleum & Energy Studies, Dehradun, Uttrakhand. Abstract Ceramic matrix composites (CMCs) are promising materials for use in high temperature structural applications. This class of materials offers high strength to density ratios. Also, their higher temperature capability over conventional super alloys may allow for components that require little or no cooling. This benefit can lead to simpler component designs and weight savings. These materials can also contribute in increasing the operating efficiency due to higher operating temperatures being achieved. Using carbon/carbon composites with the help of Nanotechnology is more beneficial in structural engineering and can decrease the production cost. They can withstand high stresses and temperatures than the traditional alumina, silicon carbide which fracture easily under mechanical loads Fundamental work in processing, characterization and analysis is important before the structural properties of this new class of Nano composites can be optimized. The fields of the Nano composite materials have received a lot of attention to scientists and engineers in recent years. The fabrication of such composites using Nano technology can make a revolution in the field of material science engineering and can make the composites able to be used in long lasting applications. 1. Introduction As we know that Composite materials are the type of materials that are formed by combining two or more materials of different physical and chemical properties. -
A Perspective on the Design and Development of the Spacex Dragon Spacecraft Heatshield
A Perspective on the Design and Development of the SpaceX Dragon Spacecraft Heatshield by Daniel J. Rasky, PhD Senior Scientist, NASA Ames Research Center Director, Space Portal, NASA Research Park Moffett Field, CA 94035 (650) 604-1098 / [email protected] February 28, 2012 2 How Did SpaceX Do This? Recovered Dragon Spacecraft! After a “picture perfect” first flight, December 8, 2010 ! 3 Beginning Here? SpaceX Thermal Protection Systems Laboratory, Hawthorne, CA! “Empty Floor Space” December, 2007! 4 Some Necessary Background: Re-entry Physics • Entry Physics Elements – Ballistic Coefficient – Blunt vs sharp nose tip – Entry angle/heating profile – Precision landing reqr. – Ablation effects – Entry G’loads » Blunt vs Lifting shapes – Lifting Shapes » Volumetric Constraints » Structure » Roll Control » Landing Precision – Vehicle flight and turn-around requirements Re-entry requires specialized design and expertise for the Thermal Protection Systems (TPS), and is critical for a successful space vehicle 5 Reusable vs. Ablative Materials 6 Historical Perspective on TPS: The Beginnings • Discipline of TPS began during World War II (1940’s) – German scientists discovered V2 rocket was detonating early due to re-entry heating – Plywood heatshields improvised on the vehicle to EDL solve the heating problem • X-15 Era (1950’s, 60’s) – Vehicle Inconel and Titanium metallic structure protected from hypersonic heating AVCOAT » Spray-on silicone based ablator for acreage » Asbestos/silicone moldable TPS for leading edges – Spray-on silicone ablator -
Marvel Universe 3.75" Action Figure Checklist
Marvel Universe 3.75" Action Figure Checklist Series 1 - Fury Files Wave 1 • 001 - Iron Man (Modern Armor) • 002 - Spider-Man (red/blue costume) (Light Paint Variant) • 002 - Spider-Man (red/blue costume) (Dark Paint Variant) • 003 - Silver Surfer • 004 - Punisher • 005 - Black Panther • 006 - Wolverine (X-Force costume) • 007 - Human Torch (Flamed On) • 008 - Daredevil (Light Red Variant) • 008 - Daredevil (Dark Red Variant) • 009 - Iron Man (Stealth Ops) • 010 - Bullseye (Light Paint Variant) • 010 - Bullseye (Dark Paint Variant) • 011 - Human Torch (Light Blue Costume) • 011 - Human Torch (Dark Blue Costume) Wave 2 • 012 - Captain America (Ultimates) • 013 - Hulk (Green) • 014 - Hulk (Grey) • 015 - Green Goblin • 016 - Ronin • 017 - Iron Fist (Yellow Dragon) • 017 - Iron Fist (Black Dragon Variant) Wave 3 • 018 - Black Costume Spider-Man • 019 - The Thing (Light Pants) • 019 - The Thing (Dark Pants) • 020 - Punisher (Modern Costume & New Head Sculpt) • 021 - Iron Man (Classic Armor) • 022 - Ms. Marvel (Modern Costume) • 023 - Ms. Marvel (Classic Red, Carol Danvers) • 023 - Ms. Marvel (Classic Red, Karla Sofen) • 024 - Hand Ninja (Red) Wave 4 • 026 - Union Jack • 027 - Moon Knight • 028 - Red Hulk • 029 - Blade • 030 - Hobgoblin Wave 5 • 025 - Electro • 031 - Guardian • 032 - Spider-man (Red and Blue, right side up) • 032 - Spider-man (Black and Red, upside down Variant) • 033 - Iron man (Red/Silver Centurion) • 034 - Sub-Mariner (Modern) Series 2 - HAMMER Files Wave 6 • 001 - Spider-Man (House of M) • 002 - Wolverine (Xavier School) -
Xii Multifunctional Composites 11 Thermal Protection Systems
xii Multifunctional Composites 11 Thermal protection systems, Maurizio Natali, Luigi Torre, and Jos´e Maria Kenny 337 11.1 The hyperthermal environment . 337 11.2 Non-ablative TPS materials . 339 11.2.1 NA-TPS on the Space Shuttle . 339 11.2.2 SSO reusable surface insulation . 341 11.2.3 Conclusion remarks on non-ablative TPS materials . 342 11.3 High temperature composites as polymeric ablatives . 342 11.4 Testing facilities . 348 11.4.1 The oxy-acetylene torch testbed - OATT . 349 11.4.2 The simulated solid rocket motor - SSRM . 349 11.4.3 Plasma jet torches . 351 11.4.4 Recession rate sensing techniques for TPSs . 352 11.5 PAs as thermal insulating materials . 356 11.5.1 Rigid HSMs . 356 11.5.2 Flexible HSMs for TPSs . 356 11.5.3 Elastomeric HSMs for SRMs . 357 11.6 Phenolic impregnated carbon ablators . 359 11.7 Differences between FRPAs and LCAs . 360 11.8 Nanostructured ablative materials . 360 11.8.1 Nanosilica as filler for traditional and nanostructured ablatives 363 Table of Contents xiii 11.8.2 Carbon nanofilaments based NRAMs . 366 11.9 Conclusions . 368 Bibliography . 369 Chapter 11 Thermal protection systems Maurizio Natali, Luigi Torre, and Jos´eMaria Kenny University of Perugia, Perugia, Italy Abstract Ablative materials play a vital role for the entire aerospace industry. Although some non-polymeric materials have been successfully used as ablatives, polymer ablatives (PA) represent the most versatile class of thermal protection system (TPS) materials. Compared with oxide, inorganic polymer, and metal based TPS materials, PAs have some intrinsic advantages, such as high heat shock resistance and low density. -
Highly Reliable 3-Dimensional Woven Thermal Protection System for Mars Sample Return
Highly Reliable 3-Dimensional Woven Thermal Protection System for Mars Sample Return Don Ellerby Presenting for Keith Peterson [email protected] (512) 650-0885 Co-Authors (alphabetical by last name), E. Christiansen, D. Ellerby, P. Gage, M. Gasch, D. Prabhu, J. Vander Kam , E. Venkatapathy, T. W hite This work is funded by NASA Ames IRAD PI: E. Venkatapathy ; Technical Lead: K. Peterson; 1 3D Woven for MSR - Overview • The MSR Challenge: – Reliability requirements for a Mars Sample Return (MSR) Earth Entry Vehicle (EEV) are expected to be more stringent than any mission flown to date. • This flows down to all EEV subsystems, including heat-shield TPS • Likely to be the key driver for design decisions in many subsystem trades. • The MSR formulation is holding an option to on-ramp a 3D-woven system. The goal of this effort is to: –Provide a recommended 3D woven TPS architecture for MSR using Risk Informed Decision Making (RIDM). • Risk Informed DeCision Making (RIDM): – MSR formulation will institute RIDM processes to select configurations it pursues in future design cycles. • RIDM is a deliberative process that uses a diverse set of performance measures, together with other considerations, to inform decision making. – RIDM acknowledges the inevitable gaps in technical information, and the need for incorporating the cumulative wisdom of experienced personnel to integrate technical and nontechnical factors in order to produce sound decisions. 2 Why 3D Woven on MSR? • All TPS systems under consideration have their own set of challenges: – Carbon-Carbon (Hot Structure): • Certification of thermal-structural performance during re-entry and at temperature under the high strain landing impact environment will be challenging. -
Aerothermodynamic Design of the Mars Science Laboratory Heatshield
Aerothermodynamic Design of the Mars Science Laboratory Heatshield Karl T. Edquist∗ and Artem A. Dyakonovy NASA Langley Research Center, Hampton, Virginia, 23681 Michael J. Wrightz and Chun Y. Tangx NASA Ames Research Center, Moffett Field, California, 94035 Aerothermodynamic design environments are presented for the Mars Science Labora- tory entry capsule heatshield. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux, shear stress, and pressure) entry trajectories from a 2009 launch. Boundary layer transition is expected prior to peak heat flux, a first for Mars entry, and the heatshield environments were defined for a fully-turbulent heat pulse. The effects of distributed surface roughness on turbulent heat flux and shear stress peaks are included using empirical correlations. Additional biases and uncertainties are based on computational model comparisons with experimental data and sensitivity studies. The peak design conditions are 197 W=cm2 for heat flux, 471 P a for shear stress, 0.371 Earth atm for pressure, and 5477 J=cm2 for total heat load. Time-varying conditions at fixed heatshield locations were generated for thermal protection system analysis and flight instrumentation development. Finally, the aerother- modynamic effects of delaying launch until 2011 are previewed. Nomenclature 1 2 2 A reference area, 4 πD (m ) CD drag coefficient, D=q1A D aeroshell diameter (m) 2 Dim multi-component diffusion coefficient (m =s) ci species mass fraction H total enthalpy -
Venus Entry Challenges and Solutions for Aerial Platform Deployment
Venus Entry Challenges and Solutions for Aerial Platform Deployment Ethiraj Venkatapathy, Don Ellerby, Paul Wercinski Entry Systems and Technology Division NASA Ames Research Center Peter Gage, Neerim Corp. Venus Aerial Platform Workshop #2, December 6, 2017 Pasadena, CA 1 Summary . Entry, Descent and Deployment (EDD) of aerial platforms at Venus with rigid aero-shell is no more challenging than at other destinations. • Limited only by the availability of efficient heat-shield/TPS technology. • NASA is investing in the maturation of “Heat-shield for Extreme Entry Environment Technology (HEEET)” to TRL 6 and is incentivizing its use for New Frontiers - 4 missions • Future Venus Aerial Platform missions can use HEEET in place of Carbon Phenolic, which is not currently available HEEET is more mass efficient and permits lower-deceleration entry profile . Lower ballistic coefficient concepts, ADEPT and HIAD, may offer additional opportunities • even lower-deceleration entry profiles • Release of multiple probes from open back of EV . Lowest ballistic coefficient lifting concepts (VAMP) may provide other science benefits but concept and technical maturity are low 12/06/17 2 NASA has Demonstrated Entry System Capability Missions have successfully survived entry environments ranging from the very mild (Mars Viking ~25 W/cm2 and 0.05 atm.) to the extreme (Galileo ~30,000W/cm2 and 7 atm.) P-V and Galileo used Carbon-Phenolic (CP) (but heritage CP TPS is no longer viable). HEEET is a mass efficient system that will be available for future Venus missions 6/11/16 3 Entry System: Protects the Scientific Payload and Deploys at the Right Location and Orientation Entry begins when atmospheric Typical Rigid Aeroshell: effects start to impact the system Function of Entry System: . -
APOLLO EXPERIENCE REPORT - THERMAL PROTECTION SUBSYSTEM by Jumes E
NASA TECHNICAL NOTE NASA TN D-7564 w= ro VI h d z c Q rn 4 z t APOLLO EXPERIENCE REPORT - THERMAL PROTECTION SUBSYSTEM by Jumes E. Puulosky und Leslie G, St. Leger Ly12d012 B. Johlzson Space Center Honst0~2, Texus 77058 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, 0. C. JANUARY 1974 ~--_. - .. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. D-7564 4. Title and Subtitle 5. Report Date January 1974 APOLLOEXPERIENCEREPORT THERMAL PROTECTION SUBSYSTEM 6. Performing Organization Code I 7. Author(s) I 8. Performing Organization Report No. JSC S-383 James E. Pavlosky and Leslie G. St. Leger, JSC 10. Work Unit No. I 9. Performing Organization Name and Address 11. Contract or Grant No. Lyndon B. Johnson Space Center Houston, Texas 77058 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code National Aeronautics and SDace Administration Washington, D. C. 20546 1 15. Supplementary Notes The JSC Director waived the use of the International System of Units (SI) for this Apollo Experienc Report because, in his judgment, the use of SI units would impair the usefulness of th'e report or result in excessive cost. 16. Abstract The Apollo command module was the first manned spacecraft to be designed to enter the atmos- phere of the earth at lunar-return velocity, and the design of the thermal protection subsystem for the resulting entry environment presented a major technological challenge. Brief descrip- tions of the Apollo command module thermal design requirements and thermal protection con- figuration, and some highlights of the ground and flight testing used for design verification of the system are presented. -
Applying the Ablative Heat Shield to the Apollo Spacecraft
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Embry-Riddle Aeronautical University The Space Congress® Proceedings 1967 (4th) Space Congress Proceedings Apr 3rd, 12:00 AM Applying the Ablative Heat Shield to the Apollo Spacecraft B. V. Coplan Materials Technology Directorate, Space Systems Division, Avco Corporation Wilmington, Massachusetts R. W. King Materials Technology Directorate, Space Systems Division, Avco Corporation Wilmington, Massachusetts Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Coplan, B. V. and King, R. W., "Applying the Ablative Heat Shield to the Apollo Spacecraft" (1967). The Space Congress® Proceedings. 4. https://commons.erau.edu/space-congress-proceedings/proceedings-1967-4th/session-15/4 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. APPLYING THE ABLATIVE HEAT SHIELD TO THE APOLLO SPACECRAFT B. V. Coplan R. W. King Materials Technology Directorate Space Systems Division Avco Corporation Wilmington, Massachusetts INTRODUCTION I. DESCRIPTION OF HEAT SHIELD The Apollo program to land men on the moon The ablative heat shield structure is com is administered by the National Aeronautics and posed of a fiberglass honeycomb, impregnated with Space Administration. Production of the space a phenolic resin and bonded with an epoxy-based craft command module has been assigned 'to the adhesive to the cleaned, stainless steel shell. North American Aviation Company. As a subcon The honeyc.omb structure is composed of a number of tractor to N.A.A., the Avco Corporation is pieces formed on molds to the proper curvatures . -
Reusable Stage Concepts Design Tool
DOI: 10.13009/EUCASS2019-421 8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: ADD DOINUMBER HERE Reusable stage concepts design tool Lars Pepermans?, Barry Zandbergeny ?Delft University of Technology Kluyverweg 1, 2629 HS Delft [email protected] yDelft University of Technology Kluyverweg 1, 2629 HS Delft Abstract Reusable launch vehicles hold the promise of substantially reducing the cost of access to space. Many different approaches towards realising a reusable rocket exist or are being proposed. This work focuses on the use of an optimisation method for conceptual design of non-winged reusable upper stages, thereby allowing it to take into account landing on land, sea or mid-air retrieval as well as landing the full stage or the engine only. As the optimisation criterion, the ratio of the specific launch cost of the reusable to the expendable version is used. The tool also provides for a Monte Carlo analysis, which allows for investigating the ruggedness of the design solution(s) found. The article will describe the methods implemented in the Conceptual Reusability Design Tool (CRDT) together with the modifications made to ParSim v3, a simulation tool by Delft Aerospace Rocket Engi- neering. Furthermore, it will present the steps taken to verify and validate CRDT. Finally, several example cases are presented based on the Atlas V-Centaur launch vehicle. The cases demonstrate the tools capa- bility of finding optimum and the sensitivity of the found optimum. However, it also shows the optimum when the user disables some Entry Descent and Landing (EDL) options. 1. Introduction To make space more accessible, one can reduce the cost of an orbital launch. -
INTRODUCTION This Study of Reentry Vehicle (RV)
INTRODUCTION This study of Reentry Vehicle (RV) systems and their associated operations was conducted for the Department of Transportation/Office of Commercial Space Transportation. The purpose of the study was to investigate and present an overview of reentry vehicle systems and to identify differences in mission requirements and operations. This includes reentry vehicle system background, system design considerations, description of past/present/future reentry systems, and hazards associated with reentry vehicles that attain orbit, reenter, and are recovered. A general literature search that included the OCST data base, NASA, Air Force, and other technical libraries and personal contact with various government or private industry organizations knowledgeable in reentry system vehicles was performed. A reference page is provided at the end of this report. A history of early manned reentry vehicle launches is shown in Appendix I. A listing of some of the agencies and companies found to be most knowledgeable in the reentry vehicle area is provided in Appendix II. The following sections provide more detailed information on reentry system vehicles. A. Background - The development of reentry vehicles began in the late 1950's due to the need for Department of Defense and Central Intelligence Agency photo reconnaissance of Soviet ICBM sites. NASA has also been involved in the use of reentry vehicles since the early 1960's, including manned space programs Mercury, Gemini and Apollo. The following sections describe the evolution of reentry system development in the United States and foreign countries: 1. Discoverer1 - The Discoverer program was of major importance because it provided a vehicle for testing orbital maneuvering capability and reentry techniques and it played a large role in enabling the first United States manned space flights to be conducted in Project Mercury. -
SFU Thesis Template Files
“To Fight the Battles We Never Could”: The Militarization of Marvel’s Cinematic Superheroes by Brett Pardy B.A., The University of the Fraser Valley, 2013 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts in the School of Communication Faculty of Communication, Art, and Technology Brett Pardy 2016 SIMON FRASER UNIVERSITY Summer 2016 Approval Name: Brett Pardy Degree: Master of Arts Title: “To Fight the Battles We Never Could”: The Militarization of Marvel’s Cinematic Superheroes Examining Committee: Chair: Frederik Lesage Assistant Professor Zoë Druick Senior Supervisor Associate Professor Adel Iskander Supervisor Assistant Professor Michael Ma External Examiner Faculty Member Department of Criminology Kwantlen Polytechnic University Date Defended/Approved: June 16, 2016 ii Abstract The Marvel comics film adaptations have been some of the most successful Hollywood products of the post 9/11 period, bringing formerly obscure cultural texts into the mainstream. Through an analysis of the adaptation process of Marvel Entertainment’s superhero franchise from comics to film, I argue that a hegemonic American model of militarization has been used by Hollywood as a discursive formation with which to transform niche properties into mass market products. I consider the locations of narrative ambiguities in two key comics texts, The Ultimates (2002-2007) and The New Avengers (2005-2012), as well as in the film The Avengers (2012), and demonstrate the significant reorientation of the film franchise towards the American military’s “War on Terror”. While Marvel had attempted to produce film adaptations for decades, only under the new “militainment” discursive formation was it finally successful.