Is Required for Spermatogonial Stem Cell Differentiation and Sustained Spermatogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Is Required for Spermatogonial Stem Cell Differentiation and Sustained Spermatogenesis Research Article 3137 SPOC1 (PHF13) is required for spermatogonial stem cell differentiation and sustained spermatogenesis Annegret Bo¨ rdlein1,*, Harry Scherthan2,*, Claudia Nelkenbrecher1, Tina Molter1, Michael R. Bo¨sl3, Christine Dippold1, Kerstin Birke4, Sarah Kinkley5, Hannah Staege5, Hans Will5 and Andreas Winterpacht1,` 1Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nu¨rnberg, 91054 Erlangen, Germany 2Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, 80937 Munich, Germany 3Max-Planck-Institute for Neurobiology, 82152 Martinsried, Germany 4Institute of Anatomy II, University of Erlangen-Nu¨rnberg, 91054 Erlangen, Germany 5Heinrich-Pette-Institut, Leibniz Institute of Experimental Virology, 20251 Hamburg, Germany *These authors contributed equally to this work `Author for correspondence ([email protected]) Accepted 17 May 2011 Journal Cell Science 124, 3137–3148 ß 2011. Published by The Company of Biologists Ltd doi: 10.1242/jcs.085936 Summary SPOC1 (PHF13) is a recently identified protein that has been shown to dynamically associate with somatic chromatin, to modulate chromatin compaction and to be important for proper cell division. Here, we report on the expression of SPOC1 in promyelocytic leukaemia zinc finger (PLZF)-positive undifferentiated spermatogonial stem cells (SSCs) of the mouse testis. To investigate further the biological function of SPOC1 in germ cells we generated Spoc1 mutant mice from a gene-trap embryonic stem cell clone. Postpubertal homozygous Spoc12/2 animals displayed a pronounced progressive loss of germ cells from an initially normal germ epithelium of the testis tubules leading to testis hypoplasia. This loss first affected non-SSC stages of germ cells and then, at a later time point, the undifferentiated spermatogonia. Remarkably, successive loss of all germ cells (at .20 weeks of age) was preceded by a transient increase in the number of undifferentiated Aaligned (Aal) spermatogonia in younger mice (at .10 weeks of age). The number of primary Spoc12/2 gonocytes, the proliferation of germ cells, and the initiation and progression of meiosis was normal, but we noted a significantly elevated level of apoptosis in the Spoc12/2 testis. Taken together, the data argue that SPOC1 is indispensable for stem cell differentiation in the testis and for sustained spermatogenesis. Key words: Spermatogonial stem cell, Differentiation, SPOC1 (PHF13), Spermatogenesis Journal Cell Science Introduction resulting in primary spermatocytes. After completion of first Stem cells are fundamental for the regenerative capacity of organ meiotic prophase, a reductional division (meiosis I) and a systems (Dick, 2008). They are characterized by having the subsequent mitosis-like division (meiosis II) lead to the potential to self-renewal and to differentiate. The mechanisms formation of haploid spermatids that develop into spermatozoa regulating the balance between these processes remain poorly (Aponte et al., 2005; de Rooij, 2001; He et al., 2009; Olive and understood. An impressive example for the capacity of self- Cuzin, 2005; Russell et al., 1990). During differentiation, the germ renewal and differentiation of stem cells comes from cells migrate from the basal lamina into the adluminal spermatogenesis, where millions of spermatozoa are produced compartment of the seminiferous epithelium by traversing the each day in the postpubertal male. Thus, spermatogenesis is one blood–testis barrier (BTB) formed by Sertoli cells. This process of the most efficient cell-producing systems in the adult requires extensive interaction between Sertoli cells, as well as mammalian organism (Sharpe et al., 2003), making it an between Sertoli and germ cells. This tight coordination between excellent model system to elucidate the general mechanisms of germ cell movement and differentiation is required in order to stem cell renewal and differentiation. avoid arrest of spermatogenesis and apoptosis during this passage It is suggested that, in non-primate mammals, spermatogonial (reviewed by Mruk and Cheng, 2004). The basal compartment stem cells (SSCs) are single cells (Asingle,As) attached to the provides a niche assuring a specialized microenvironment capable basement membrane of the seminiferous tubules. Depending on of generating the necessary balance between self-renewal and whether the cells undergo self-renewal or differentiation, the As differentiation. This process is regulated by extrinsic niche stimuli spermatogonia either divide into two separate (As) cells or into a secreted by the Sertoli cells, as well as by intrinsic gene expression pair of spermatogonia (Apaired,Apr), respectively. The Apr enters in the SSCs. Although several extrinsic stimuli have been additional rounds of cell divisions after which the spermatogonia described (Chen et al., 2005; Hofmann, 2008; Oatley and form chains and are called Aaligned (Aal) spermatogonia. Apr and Brinster, 2008) little is known about the intrinsic factors that Aal spermatogonia are still considered undifferentiated (Nakagawa regulate SSC self-renewal, proliferation and differentiation. In et al., 2007). The Aal cells then further differentiate into the A1–A4 undifferentiated SSCs (As–Aal), some core transcription factors are spermatogonia, intermediate and B spermatogonia, which undergo known (e.g. OCT4 and SOX2) that are of general importance for a final round of replication and enter the first meiotic prophase, the maintenance of the pluripotency of stem cells (Dann et al., 3138 Journal Cell Science 124 (18) 2008; Oatley and Brinster, 2008). Furthermore, three factors, by lacZ staining and its sequence can easily be determined by 59 promyelocytic leukaemia zinc-finger (PLZF, also known as rapid amplification of cDNA ends (59 RACE). In the ESC clones ZBTB16 and ZFP145) (Buaas et al., 2004; Costoya et al., 2004; Xb691 and Xa022, the 59 RACE product contained sequences Falender et al., 2005; Hobbs et al., 2010), TATA-box-binding- from exon 1 [nucleotides 303 to 354 of the Spoc1 (Phf13) cDNA protein-associated factor 4B (TAF4B) (Falender et al., 2005) and (GenBank accession number NM_172705)] of the Spoc1 gene, NANOS2 an RNA-binding protein (Sada et al., 2009; Saga, 2010) indicating an insertion of the gene-trap vector into intron 1 have also been shown to be important for SSC maintenance. (Fig. 1A). We further mapped the integration sites to between Whereas TAF4B is involved in SSC formation and proliferation, nucleotides +917 and +918 (Xb691) and +876 and +877 (Xa022) PLZF and NANOS2 are directly involved in SSC self-renewal. of intron 1 relative to the first base of intron 1. On the RNA level PLZF functions both as a transcriptional repressor and as an this insertion leads to the termination of Spoc1 gene transcripts activator of genes implicated in self-renewal of SSCs and in after exon 1, which contains the translation start site. differentiation of undifferentiated A-type (As–Aal) spermatogonia Mutant mice were generated from both ESC clones by (Buaas et al., 2004; Dadoune, 2007; Hobbs et al., 2010). Loss-of- injection into blastocysts from C57BL/6 mice. Subsequent function studies for PLZF and NANOS in the mouse result in intercrosses of heterozygous animals generated a mixed genetic animals with a progressive loss of germ cells that culminate in a background. The phenotypes were identical for both mice strains Sertoli-cell-only phenotype in a variable percentage of tubules and therefore the data are presented only for the mouse strain (Buaas et al., 2004; Costoya et al., 2004; Sada et al., 2009). generated from ESC clone Xb691. For PCR genotyping (Fig. 1B) Recently, we identified the gene SPOC1 (for survival-time- of mutant Spoc1, primers were generated to both the b-gal associated PHD protein in ovarian cancer), also designated cassette and to intron 1, as shown in Fig. 1A. To determine the PHF13, and demonstrated that enhanced SPOC1 RNA levels in effect of the gene-trap insertion on splicing of Spoc1, RT-PCR primary and recurrent epithelial ovarian cancers are correlated was performed on RNA isolated from tail cuts of heterozygous with a shorter survival time in a cohort of patients (Mohrmann and homozygous mice using primers corresponding to the b- et al., 2005). The SPOC1 protein localizes to the nucleus and galactosidase sequence of the gene-trap vector, as well as from contains a plant homeodomain (PHD), which is believed to exon 1 of Spoc1. Sequencing of the resulting RT-PCR products regulate chromatin-specific interactions (Bienz, 2006). In revealed splicing of exon 1 to the splice acceptor site of the gene- agreement with this prediction, we have recently demonstrated trap cassette in homozygous (2/2) and heterozygous (+/2) that SPOC1 is dynamically associated with chromatin and that it animals (data not shown). Heterozygous animals expressed b- plays a role in proper chromosome condensation and cell division galactosidase from the gene-trap construct at a low level in most (Kinkley et al., 2009). SPOC1 RNA is detectable in most tissues tissues, demonstrating splicing and functionality of the gene trap but the highest levels are present in the testis where it exclusively (Fig. 1C). localizes to spermatogonia (Mohrmann et al., 2005). These In order to prove the efficient knockdown of endogenous findings suggest a testis-specific functional role of SPOC1 in SPOC1 in vivo, several approaches were undertaken. First, spermatogonial stem cells. Beyond this, there is very little additional data
Recommended publications
  • Cellular Therapy Via Spermatogonial Stem Cells for Treating Impaired Spermatogenesis, Non-Obstructive Azoospermia
    cells Review Cellular Therapy via Spermatogonial Stem Cells for Treating Impaired Spermatogenesis, Non-Obstructive Azoospermia Nesma E. Abdelaal 1, Bereket Molla Tanga 2,3, Mai Abdelgawad 4, Sahar Allam 5 , Mostafa Fathi 6, Islam M. Saadeldin 7 , Seonggyu Bang 2 and Jongki Cho 2,* 1 Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Universite Paris-Saclay/Île-de-France, 91198 Gif-sur-Yvette, France; [email protected] 2 College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; [email protected] (B.M.T.); [email protected] (S.B.) 3 Faculty of Veterinary Medicine, Hawassa University, P.O. Box 05 Hawassa, Ethiopia 4 Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62521, Egypt; [email protected] 5 Faculty of Medicine, Tanta University, Tanta 31527, Egypt; [email protected] 6 Biotechnology Program, Faculty of Agriculture, Ain Shams University, Giza 11566, Egypt; [email protected] 7 Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +82-42-821-6788 Abstract: Male infertility is a major health problem affecting about 8–12% of couples worldwide. Spermatogenesis starts in the early fetus and completes after puberty, passing through different stages. Male infertility can result from primary or congenital, acquired, or idiopathic causes. The Citation: Abdelaal, N.E.; Tanga, absence of sperm in semen, or azoospermia, results from non-obstructive causes (pretesticular and B.M.; Abdelgawad, M.; Allam, S.; testicular), and post-testicular obstructive causes.
    [Show full text]
  • Regulation of Germ Line Stem Cell Homeostasis
    Anim. Reprod., v.12, n.1, p.35-45, Jan./Mar. 2015 Regulation of germ line stem cell homeostasis T.X. Garcia, M.C. Hofmann1 Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA. Abstract Blanpain and Fuchs, 2009; Rossi et al.., 2011; Arwert et al.., 2012). Proper regulation of stem cell fate is Mammalian spermatogenesis is a complex therefore critical to maintain adequate cell numbers in process in which spermatogonial stem cells of the testis health and diseases. Accumulating evidence suggests (SSCs) develop to ultimately form spermatozoa. In the that stem cells behavior is regulated by both seminiferous epithelium, SSCs self-renew to maintain extracellular signals from their microenvironment, or the pool of stem cells throughout life, or they niche, and intrinsic signals within the cells. Using differentiate to generate a large number of germ cells. A diverse model organisms, much work has been done to balance between SSC self-renewal and differentiation is understand how the niche controls stem cell self- therefore essential to maintain normal spermatogenesis renewal and differentiation and how in turn stem cells and fertility. Stem cell homeostasis is tightly regulated influence their environment. This mini-review focuses by signals from the surrounding microenvironment, or on recent findings pertaining to germ cell development SSC niche. By physically supporting the SSCs and and the relationship between spermatogonial stem cells providing them with these extrinsic molecules, the of the testis and their niche. Sertoli cell is the main component of the niche. Earlier studies have demonstrated that GDNF and CYP26B1, Development of the male germ line produced by Sertoli cells, are crucial for self-renewal of the SSC pool and maintenance of the undifferentiated In the mouse, the germ line originates from a state.
    [Show full text]
  • Approaches and Technologies in Male Fertility Preservation
    International Journal of Molecular Sciences Review Approaches and Technologies in Male Fertility Preservation Mahmoud Huleihel 1,2,* and Eitan Lunenfeld 2,3,4 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel 2 The Center of Advanced Research and Education in Reproduction (CARER), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; lunenfl[email protected] 3 Department of OB/GYN, Soroka Medical Center, Beer Sheva 8410501, Israel 4 Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel * Correspondence: [email protected]; Tel.: +972-86479959 Received: 28 May 2020; Accepted: 29 July 2020; Published: 31 July 2020 Abstract: Male fertility preservation is required when treatment with an aggressive chemo-/-radiotherapy, which may lead to irreversible sterility. Due to new and efficient protocols of cancer treatments, surviving rates are more than 80%. Thus, these patients are looking forward to family life and fathering their own biological children after treatments. Whereas adult men can cryopreserve their sperm for future use in assistance reproductive technologies (ART), this is not an option in prepubertal boys who cannot produce sperm at this age. In this review, we summarize the different technologies for male fertility preservation with emphasize on prepubertal, which have already been examined and/or demonstrated in vivo and/or in vitro using animal models and, in some cases, using human tissues. We discuss the limitation of these technologies for use in human fertility preservation. This update review can assist physicians and patients who are scheduled for aggressive chemo-/radiotherapy, specifically prepubertal males and their parents who need to know about the risks of the treatment on their future fertility and the possible present option of fertility preservation.
    [Show full text]
  • Triggers of Spermatogenesis Moses Bibi Moses D
    Triggers of Spermatogenesis Moses Bibi Moses D. Bibi will graduate in January 2020 with a Bachelor of Science Honors degree in Biology, is accepted in the Touro Medical Honors Pathway with New York Medical College and will attend medical school beginning fall 2020. Abstract Of the 7% of men affected with infertility, about 54% suffer from pre-testicular and/or testicular factor induced azoospermia/ oligospermia .This agenesis of spermatozoa has been the subject of much andrology research over the past 50 years, with a par- ticular focus in the triggers of spermatogenesis .While much of their work is limited to murine populations, researchers have put a lot of emphasis on the spermatogonial stem cell (SSC) niche as the source of the trigger(s) . By following physiological patterns exhibited in the seminiferous epithelium, researchers have been able to detect distinct morphological stages that correlate with spermatogonial germ-line action . Different niche cells appear to release different concentrations of active compounds, androgens, and receptors during different stages. Specifically, in the steps leading up to and during SSC differentiation, Sertoli cells and germ line cells release retinoic acid and retinoic acid receptors . Retinoic acid appears to trigger SSCs in vitro as well .Testosterone, re- leased by Leydig cells and potentially testicular macrophages, appears to play an essential role in a spermiation-SSC differentiation axis, as well as a role in GDNF production by peritubular myoid cells, both required for proper maintenance of SSC populations and commitment to meiosis .With new and promising research being done on the whole of the SSC niche, as opposed to just Sertoli cells, scientists are closer than ever to uncovering the secrets of male fertility .
    [Show full text]
  • Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of in Vitro Culture Systems
    biomolecules Review Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems Xuan Xie 1,* , Rafael Nóbrega 2 and Martin Pšeniˇcka 1 1 Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodˇnany, Czech Republic; [email protected] 2 Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618-970, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +420-606-286-138 Received: 9 March 2020; Accepted: 14 April 2020; Published: 22 April 2020 Abstract: Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures.
    [Show full text]
  • Derivation and Propagation of Spermatogonial Stem Cells From
    Xu et al. Stem Cell Research & Therapy (2020) 11:408 https://doi.org/10.1186/s13287-020-01896-0 RESEARCH Open Access Derivation and propagation of spermatogonial stem cells from human pluripotent cells Huiming Xu1,2* , Mengbo Yang1, Ruhui Tian3, Yonghui Wang1, Linhong Liu1, Zijue Zhu3, Shi Yang4, Qingqing Yuan1, Minghui Niu1, Chencheng Yao3, Erlei Zhi3, Peng Li3, Chenhao Zhou3, Zuping He1, Zheng Li3* and Wei-Qiang Gao1,2* Abstract Objectives: This study is designed to generate and propagate human spermatogonial stem cells (SSCs) derived from human pluripotent stem cells (hPSCs). Methods: hPSCs were differentiated into SSC-like cells (SSCLCs) by a three-step strategy. The biological characteristics of SSCLCs were detected by immunostaining with antibodies against SSC markers. The ability of self- renewal was measured by propagating for a long time and still maintaining SSCs morphological property. The differentiation potential of SSCLCs was determined by the generation of spermatocytes and haploid cells, which were identified by immunostaining and flow cytometry. The transcriptome analysis of SSCLCs was performed by RNA sequencing. The biological function of SSCLCs was assessed by xeno-transplantation into busulfan-treated mouse testes. Results: SSCLCs were efficiently generated by a 3-step strategy. The SSCLCs displayed a grape-like morphology and expressed SSC markers. Moreover, SSCLCs could be propagated for approximately 4 months and still maintained their morphological properties. Furthermore, SSCLCs could differentiate into spermatocytes and haploid cells. In addition, SSCLCs displayed a similar gene expression pattern as human GPR125+ spermatogonia derived from human testicular tissues. And more, SSCLCs could survive and home at the base membrane of seminiferous tubules.
    [Show full text]
  • Spermatogonial Stem Cells: Implications for Genetic Disorders and Prevention
    STEM CELLS AND DEVELOPMENT Volume 25, Number 20, 2016 Mary Ann Liebert, Inc. DOI: 10.1089/scd.2016.0210 Spermatogonial Stem Cells: Implications for Genetic Disorders and Prevention Makiko Yamada, Letizia De Chiara, and Marco Seandel Spermatogonial stem cells (SSCs) propagate mammalian spermatogenesis throughout male reproductive life by continuously self-renewing and differentiating, ultimately, into sperm. SSCs can be cultured for long periods and restore spermatogenesis upon transplantation back into the native microenvironment in vivo. Con- ventionally, SSC research has been focused mainly on male infertility and, to a lesser extent, on cell repro- gramming. With the advent of genome-wide sequencing technology, however, human studies have uncovered a wide range of pathogenic alleles that arise in the male germ line. A subset of de novo point mutations was shown to originate in SSCs and cause congenital disorders in children. This review describes both monogenic diseases (eg, Apert syndrome) and complex disorders that are either known or suspected to be driven by mutations in SSCs. We propose that SSC culture is a suitable model for studying the origin and mechanisms of these diseases. Lastly, we discuss strategies for future clinical implementation of SSC-based technology, from detecting mutation burden by sperm screening to gene correction in vitro. Introduction sumes within the first week after birth [4,5]. Prospermatogonia migrate to the basement membrane and the spermatogenesis tem cells play a pivotal role in maintaining homeo- phase begins [6]. The differentiation of PGCs into prosper- Sstasis in adult tissues; they self-renew, differentiate, matogonia in humans is not well understood, but there seem to and regenerate tissues upon injury.
    [Show full text]
  • Biological Therapy for Non-Obstructive Azoospermia Sarah C
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2018 VOL. 18, NO. 1, 19–23 https://doi.org/10.1080/14712598.2018.1380622 REVIEW Biological therapy for non-obstructive azoospermia Sarah C. Vija, Edmund Sabanegh Jrb and Ashok Agarwalc aGlickman Urologic and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; bDepartment of Urology, Glickman Urologic and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; cAndrology Laboratory, Glickman Urologic and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA ABSTRACT ARTICLE HISTORY Introduction: Most male patients with non-obstructive azoospermia (NOA) have no therapeutic options Received 26 June 2017 outside of assisted reproductive techniques to conceive a biological child. If mature sperm cannot be Accepted 13 September 2017 obtained from the testes, these patients must rely on options of donor sperm or adoption. Several KEYWORDS techniques are in the experimental stage to provide this patient population alternatives for conceiving. Gene therapy; Areas covered: This review discusses three of the experimental techniques for restoring fertility in men non-obstructive with NOA: spermatogonial stem cell transplantation, the use of adult and embryonic stem cells to azoospermia; develop mature gametes and gene therapy. After this discussion, the authors give their expert opinion spermatogonial stem cell and provide the reader with their perspectives for the future. transplantation; pluripotent Expert opinion: Several limitations, both technical and ethical, exist for spermatogonial stem cell stem cell transplantation, the use of stem cells and gene therapy. Well-defined reproducible protocols are necessary. Furthermore, several technical barriers exist for all protocols. And while success has been achieved in animal models, future research is still required in human models.
    [Show full text]
  • Testicular Organoids to Study Cell-Cell Interactions in the Mammalian Testis
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Andrology Manuscript Author . Author manuscript; Manuscript Author available in PMC 2021 July 01. Published in final edited form as: Andrology. 2020 July ; 8(4): 835–841. doi:10.1111/andr.12680. Testicular organoids to study cell-cell interactions in the mammalian testis Sadman Sakib1,2, Taylor Goldsmith1,2, Anna Voigt2, Ina Dobrinski1,2 1Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary 2Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary Abstract Background: Over the last ten years, three-dimensional organoid culture has garnered renewed interest, as organoids generated from primary cells or stem cells with cell associations and functions similar to organs in vivo can be a powerful tool to study tissue-specific cell-cell interactions in vitro. Very recently, a few interesting approaches have been put forth for generating testicular organoids for studying the germ cell niche microenvironment. Aim: To review different model systems that have been employed to study germ cell biology and testicular cell-cell interactions and discuss how the organoid approach can address some of the shortcomings of those systems. Results and Conclusion: Testicular organoids that bear architectural and functional similarities to their in vivo counterparts, are a powerful model system to study cell-cell interactions in the germ cell niche. Organoids enable studying samples in humans and other large animals where in vivo experiments are not possible, allow modeling of testicular disease and malignancies and may provide a platform to design more precise therapeutic interventions. Keywords Testicular organoids; morphogenesis; germ cell niche; cell-cell interaction Introduction Historically the term “organoid” has been used to describe different three-dimensional (3D) cell culture systems such as organ cultures (Barcellos-Hoff et al.
    [Show full text]
  • Development and Function of Smooth Muscle Cells Is Modulated by Hic1 in Mouse Testis Aya Uchida1,2, Sadman Sakib1, Elodie Labit1, Sepideh Abbasi1, R
    © 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev185884. doi:10.1242/dev.185884 RESEARCH ARTICLE Development and function of smooth muscle cells is modulated by Hic1 in mouse testis Aya Uchida1,2, Sadman Sakib1, Elodie Labit1, Sepideh Abbasi1, R. Wilder Scott3, T. Michael Underhill3, Jeff Biernaskie1 and Ina Dobrinski1,* ABSTRACT (Yoshida et al., 2007). It is traditionally accepted that Sertoli cells In mammalian testis, contractile peritubular myoid cells (PMCs) support the spermatogonial stem cell (SSC) niche by secreting regulate the transport of sperm and luminal fluid, while secreting several growth factors (Meng et al., 2000; Takashima et al., 2015; growth factors and extracellular matrix proteins to support the Takase and Nusse, 2016), whereas the importance of testicular spermatogonial stem cell niche. However, little is known about the smooth muscle cells in supporting the SSC niche is only beginning role of testicular smooth muscle cells during postnatal testicular to be appreciated (Chen et al., 2014; de Rooij, 2017). Testicular development. Here we report age-dependent expression of smooth muscle cells secret trophic factors, such as glial cell line- hypermethylated in cancer 1 (Hic1; also known as ZBTB29)in derived neurotrophic factor (GDNF), colony stimulating factor 1 testicular smooth muscle cells, including PMCs and vascular smooth (CSF1) and chemokine (C-X-C motif) ligand 12 (CXCL12), to muscle cells, in the mouse. Postnatal deletion of Hic1 in smooth support the maintenance and self-renewal of SSCs (Oatley et al., muscle cells led to their increased proliferation and resulted in 2009; Chen et al., 2016; Mayer et al., 2018), while regulating the dilatation of seminiferous tubules, with increased numbers of PMCs.
    [Show full text]
  • Targeting the Gdnf Gene in Peritubular Myoid Cells Disrupts Undifferentiated Spermatogonial Cell Development
    Targeting the Gdnf Gene in peritubular myoid cells disrupts undifferentiated spermatogonial cell development Liang-Yu Chena, William D. Willisa, and Edward M. Eddya,1 aGamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 Edited by John J. Eppig, The Jackson Laboratory, Bar Harbor, ME, and approved December 16, 2015 (received for review September 9, 2015) Spermatogonial stem cells (SSCs) are a subpopulation of undiffer- type A-aligned (Aal) spermatogonia, and these in turn divide to entiated spermatogonia located in a niche at the base of the sem- form longer chains of differentiating (type A1,A2,A3, intermedi- iniferous epithelium delimited by Sertoli cells and peritubular myoid ate, and B) spermatogonia. (PM) cells. SSCs self-renew or differentiate into spermatogonia that Although SSCs are single cells, not all As spermatogonia are ∼ proliferate to give rise to spermatocytes and maintain spermato- likely to be SSCs. There are 35,000 As spermatogonia in the genesis. Glial cell line-derived neurotrophic factor (GDNF) is essential testes of adult mice (8), but only about 3,000 of these have the for this process. Sertoli cells produce GDNF and other growth factors ability to regenerate spermatogenesis when transplanted to and are commonly thought to be responsible for regulating SSC germ cell-depleted testes (9). Although there are no generally development, but limited attention has been paid to the role of PM accepted molecular markers specific for SSCs, potential candidates cells in this process. A conditional knockout (cKO) of the androgen are inhibitor of DNA binding 4 (ID4) and paired box 7 (PAX7), – receptor gene in PM cells resulted in male infertility.
    [Show full text]
  • Mammalian Gonocyte and Spermatogonia Differentiation: Recent Advances and Remaining Challenges
    REPRODUCTIONREVIEW Mammalian gonocyte and spermatogonia differentiation: recent advances and remaining challenges Gurpreet Manku1,2,3 and Martine Culty1,2,3 1The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4, Departments of 2Medicine and 3Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada Correspondence should be addressed to M Culty; Email: [email protected] Abstract The production of spermatozoa relies on a pool of spermatogonial stem cells (SSCs), formed in infancy from the differentiation of their precursor cells, the gonocytes. Throughout adult life, SSCs will either self-renew or differentiate, in order to maintain a stem cell reserve while providing cells to the spermatogenic cycle. By contrast, gonocytes represent a transient and finite phase of development leading to the formation of SSCs or spermatogonia of the first spermatogenic wave. Gonocyte development involves phases of quiescence, cell proliferation, migration, and differentiation. Spermatogonia, on the other hand, remain located at the basement membrane of the seminiferous tubules throughout their successive phases of proliferation and differentiation. Apoptosis is an integral part of both developmental phases, allowing for the removal of defective cells and the maintenance of proper germ–Sertoli cell ratios. While gonocytes and spermatogonia mitosis are regulated by distinct factors, they both undergo differentiation in response to retinoic acid. In contrast to postpubertal spermatogenesis, the early steps of germ cell development have only recently attracted attention, unveiling genes and pathways regulating SSC self-renewal and proliferation. Yet, less is known on the mechanisms regulating differentiation. The processes leading from gonocytes to spermatogonia have been seldom investigated.
    [Show full text]