Sensitive Cometchip Assay for Screening Potentially Carcinogenic DNA Adducts by Trapping DNA Repair Intermediates
Sensitive CometChip assay for screening potentially carcinogenic DNA adducts by trapping DNA repair intermediates The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Ngo, Le P. et al. “Sensitive CometChip assay for screening potentially carcinogenic DNA adducts by trapping DNA repair intermediates.” Nucleic Acids Research 48 (2020): e13 © 2020 The Author(s) As Published 10.1093/nar/gkz1077 Publisher Oxford University Press (OUP) Version Final published version Citable link https://hdl.handle.net/1721.1/124825 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ Published online 11 December 2019 Nucleic Acids Research, 2020, Vol. 48, No. 3 e13 doi: 10.1093/nar/gkz1077 Sensitive CometChip assay for screening potentially carcinogenic DNA adducts by trapping DNA repair intermediates Le P. Ngo 1, Norah A. Owiti1, Carol Swartz2, John Winters2, Yang Su3,JingGe1, Aoli Xiong4, Jongyoon Han1,4,5, Leslie Recio2, Leona D. Samson1,3 and Downloaded from https://academic.oup.com/nar/article-abstract/48/3/e13/5661085 by MIT Libraries user on 05 March 2020 Bevin P. Engelward1,* 1Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, 2Toxicology Program, Integrated Laboratory Systems, Inc., Research Triangle Park, NC 27560, USA, 3Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, 4BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology, 138602 Singapore and 5Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received October 29, 2018; Revised October 08, 2019; Editorial Decision October 27, 2019; Accepted November 19, 2019 ABSTRACT thus provides a broadly effective approach for detec- tion of bulky DNA adducts.
[Show full text]