Next-Generation Sequencing Approach to Hyperckemia: a 2-Year Cohort Study E352

Total Page:16

File Type:pdf, Size:1020Kb

Next-Generation Sequencing Approach to Hyperckemia: a 2-Year Cohort Study E352 Volume 5, Number 5, October 2019 Neurology.org/NG A peer-reviewed clinical and translational neurology open access journal ARTICLE Next-generation sequencing approach to hyperCKemia: A 2-year cohort study e352 ARTICLE Impaired kidney structure and function in spinal muscular atrophy e353 ARTICLE A family with spinocerebellar ataxia and retinitis pigmentosa att ributed to an ELOVL4 mutation e357 ARTICLE Epidemiology of DYT1 dystonia: Estimating prevalence via genetic ascertainment e358 TABLE OF CONTENTS Volume 5, Number 5, October 2019 Neurology.org/NG e358 Epidemiology of DYT1 dystonia: Estimating prevalence via genetic ascertainment J. Park, S.M. Damrauer, A. Baras, J.G. Reid, J.D. Overton, and P. Gonzalez-Alegre Open Access e359 Homozygous pathogenic variant in BRAT1 associated with nonprogressive cerebellar ataxia A. Mahjoub, Z. Cihlarova, M. T´etreault, L. MacNeil, N. Sondheimer, K.W. Caldecott, H. Hanzlikova, and G. Yoon, on behalf of the Care4Rare Canada Consortium Open Access Video Clinical/Scientific Notes e351 Fatal TTR amyloidosis with neuropathy from domino liver p.Val71Ala transplant R.C. Puffer, R.J. Spinner, H. Bi, R. Sharma, Y. Wang, J.D. Theis, E.D. McPhail, J.J. Poterucha, Z. Niu, and C.J. Klein Open Access e356 A novel PUS7 mutation causes intellectual disability with autistic and aggressive behaviors H. Darvish, L.J. Azcona, E. Alehabib, F. Jamali, A. Tafakhori, S. Ranji-Burachaloo, J.C. Jen, and C. Pais´an-Ruiz Open Access e360 Enhancement of cranial nerves, conus medullaris, and nerve roots in POLG mitochondrial disease M. Bayat, Y. Yavarian, A. Bayat, and J. Christensen Open Access e361 Digital necrosis in an infant with severe spinal muscular atrophy Articles D. Carrasco, P. Magoulas, J.C. Scull, J.A. Jarrell, S.R. Lalani, and M.F. Wangler e352 Next-generation sequencing approach to Open Access hyperCKemia: A 2-year cohort study Correction A. Rubegni, A. Malandrini, C. Dosi, G. Astrea, J. Baldacci, C. Battisti, G. Bertocci, M.A. Donati, M.T. Dotti, A. Federico, F. Giannini, e362 Genomic deletions upstream of lamin B1 lead to S. Grosso, R. Guerrini, S. Lenzi, M.A. Maioli, F. Melani, E. Mercuri, M. Sacchini, S. Salvatore, G. Siciliano, D. Tolomeo, P. Tonin, N. Volpi, atypical autosomal dominant leukodystrophy F.M. Santorelli, and D. Cassandrini Open Access e353 Impaired kidney structure and function in spinal muscular atrophy F.C. Nery, J.J. Siranosian, I. Rosales, M.-O. Deguise, A. Sharma, A.W. Muhtaseb, P. Nwe, A.J. Johnstone, R. Zhang, M. Fatouraei, N. Huemer, C.R.R. Alves, R. Kothary, and K.J. Swoboda Open Access e357 A family with spinocerebellar ataxia and retinitis Cover image pigmentosa attributed to an ELOVL4 mutation Kidney histopathology in patients with SMA type 1. Sections from the fi C. Xiao, E.M. Binkley, J. Rexach, A. Knight-Johnson, P. Khemani, kidneys of SMA cases show medullary calci cations along collecting B.L. Fogel, S. Das, E.M. Stone, and C.M. Gomez ducts. Medullary interstitial fibrosis is also present (trichrome). Open Access See e353 Academy Officers Neurology® is a registered trademark of the American Academy of Neurology (registration valid in the United States). James C. Stevens, MD, FAAN, President Neurology® Genetics (eISSN 2376-7839) is an open access journal published Orly Avitzur, MD, MBA, FAAN, President Elect online for the American Academy of Neurology, 201 Chicago Avenue, Ann H. Tilton, MD, FAAN, Vice President Minneapolis, MN 55415, by Wolters Kluwer Health, Inc. at 14700 Citicorp Drive, Bldg. 3, Hagerstown, MD 21742. Business offices are located at Two Carlayne E. Jackson, MD, FAAN, Secretary Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Production offices are located at 351 West Camden Street, Baltimore, MD 21201-2436. Janis M. Miyasaki, MD, MEd, FRCPC, FAAN, Treasurer © 2019 American Academy of Neurology. Ralph L. Sacco, MD, MS, FAAN, Past President Neurology® Genetics is an official journal of the American Academy of Neurology. Journal website: Neurology.org/ng, AAN website: AAN.com Executive Office, American Academy of Neurology Copyright and Permission Information: Please go to the journal website (www.neurology.org/ng) and click the Permissions tab for the relevant Catherine M. Rydell, CAE article. Alternatively, send an email to [email protected]. Chief Executive Officer General information about permissions can be found here: https://shop.lww.com/ journal-permission. 20l Chicago Ave Disclaimer: Opinions expressed by the authors and advertisers are not Minneapolis, MN 55415 necessarily those of the American Academy of Neurology, its affiliates, or of the Publisher. The American Academy of Neurology, its affiliates, and the Tel: 612-928-6000 Publisher disclaim any liability to any party for the accuracy, completeness, efficacy, or availability of the material contained in this publication (including drug dosages) or for any damages arising out of the use Editorial Office or non-use of any of the material contained in this publication. Patricia K. Baskin, MS, Executive Editor Advertising Sales Representatives: Wolters Kluwer, 333 Seventh Avenue, Kathleen M. Pieper, Senior Managing Editor, Neurology New York, NY 10001. Contacts: Eileen Henry, tel: 732-778-2261, fax: 973-215- 2485, [email protected] and in Europe: Craig Silver, tel: +44 Lee Ann Kleffman, Managing Editor, Neurology® Genetics 7855 062 550 or e-mail: [email protected]. Sharon L. Quimby, Managing Editor, Neurology® Clinical Practice Careers & Events: Monique McLaughlin, Wolters Kluwer, Two Commerce fl Square, 2001 Market Street, Philadelphia, PA 19103, tel: 215-521-8468, fax: 215- Morgan S. Sorenson, Managing Editor, Neurology® Neuroimmunology & Neuroin ammation 521-8801; [email protected]. Andrea Rahkola, Production Editor, Neurology Reprints: Meredith Edelman, Commercial Reprint Sales, Wolters Kluwer, Two Robert J. Witherow, Senior Editorial Associate Commerce Square, 2001 Market Street, Philadelphia, PA 19103, tel: 215-356-2721; Karen Skaja, Senior Editorial Associate [email protected]; [email protected]. Special projects: US & Canada: Alan Moore, Wolters Kluwer, Two Kaitlyn Aman Ramm, Editorial Assistant Commerce Square, 2001 Market Street, Philadelphia, PA 19103, tel: Kristen Swendsrud, Editorial Assistant 215-521-8638, [email protected]. International: Andrew Wible, Senior Manager, Rights, Licensing, and Partnerships, Wolters Kluwer; Justin Daugherty, Editorial Assistant [email protected]. Madeleine Sendek, MPH, Editorial Assistant Publisher Wolters Kluwer Baltimore, MD Publishing Staff Kim Jansen, Executive Publisher Jessica Heise, Production Team Leader, Neurology Journals Megen Miller, Production Editor Steve Rose, Editorial Assistant Stacy Drossner, Production Associate Copyright ª 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited. A peer-reviewed clinical and translational neurology open access journal Neurology.org/NG Neurology® Genetics Editor Stefan M. Pulst, MD, Dr med, FAAN Vision Neurology®: Genetics will be the premier peer- reviewed journal in the field of neurogenetics. Deputy Editor Massimo Pandolfo, MD, FAAN Mission Neurology: Genetics will provide neurologists Associate Editors and clinical research scientists with Alexandra Durr, MD, PhD outstanding peer-reviewed articles, Margherita Milone, MD, PhD editorials, and reviews to elucidate the role Raymond P. Roos, MD, FAAN of genetic and epigenetic variations in Jeffery M. Vance, MD, PhD diseases and biological traits of the central Editorial Board and peripheral nervous systems. Hilary Coon, PhD Giovanni Coppola, MD ChantalDepondt, MD, PhD Editorial Tel: 612-928-6400 Brent L. Fogel, MD, PhD, FAAN Inquiries Toll-free: 800-957-3182 (US) AnthonyJ. Griswold, PhD Fax: 612-454-2748 Orhun H. Kantarci, MD [email protected] Julie R. Korenberg, PhD, MD Davide Pareyson, MD Shoji Tsuji, MD,PhD DinekeS. Verbeek,PhD Stay facebook.com/NeurologyGenetics Connected David Viskochil, MD,PhD twitter.com/greenjournal JulianeWinkelmann, MD Juan I. Young, PhD youtube.com/user/NeurologyJournal Neurology® Journals Editor-in-Chief Classification of Evidence Robert A. Gross, MD, PhD, FAAN Review Team Deputy Editor Melissa J. Armstrong, MD Bradford B. Worrall, MD, MSc, FAAN Richard L. Barbano, MD,PhD, FAAN RichardM.Dubinsky,MD,MPH,FAAN Section Editors Jeffrey J. Fletcher, MD, MSc Gary M. Franklin, MD, MPH, FAAN Biostatistics David S. Gloss II, MD,MPH&TM Richard J. Kryscio, PhD John J. Halperin, MD,FAAN Sue Leurgans, PhD Jason Lazarou, MSc, MD V. Shane Pankratz, PhD Steven R. Mess´e, MD, FAAN Classification of Evidence Evaluations Pushpa Narayanaswami, MBBS, DM, Gary S. Gronseth, MD, FAAN FAAN Alex Rae-Grant, MD Equity, Diversity, and Inclusion (EDI) RoyH.Hamilton,MD,MS,FAAN Holly E. Hinson, MD, MCR, FAAN Podcasts Stacey L. Clardy, MD, PhD Jeffrey B. Ratliff, MD, Deputy Podcast Editor Ombudsman David S. Knopman, MD, FAAN Scientific Integrity Advisor Robert B. Daroff, MD, FAAN Copyright ª 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited. ARTICLE OPEN ACCESS Next-generation sequencing approach to hyperCKemia A 2-year cohort study Anna Rubegni, MD, Alessandro Malandrini, MD, Claudia Dosi, MD, Guja Astrea, MD, Jacopo Baldacci, BS, Correspondence Carla Battisti, MD, Giulia Bertocci, BSc, M. Alice Donati, MD, M. Teresa Dotti, MD, Antonio Federico, MD, Dr. Santorelli [email protected] Fabio Giannini, MD, Salvatore Grosso, MD, Renzo Guerrini, MD, Sara
Recommended publications
  • Rehabilitating Individuals with Spinocerebellar Ataxia: Experiences from Impairment-Based Rehabilitation Through Multidisciplinary Care Approach
    Neurology Asia 2020; 25(1) : 75 – 80 Rehabilitating individuals with spinocerebellar ataxia: Experiences from impairment-based rehabilitation through multidisciplinary care approach 1,2Fatimah Ahmedy MBBCh MRehabMed, 1Yuen Woei Neoh MBBS, MRehabMed, 1Lydia Abdul Latiff MBBS MRehabMed 1Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur; 2Department of Surgery, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia Abstract Spinocerebellar ataxia (SCA) is a rare neurodegenerative disease with progressive course and poor expected outcomes. Therefore, rehabilitation remains the principal form of management especially in advanced disease. Impairment-based rehabilitation through multidisciplinary care approach has proven benefits for functional improvement in individuals with advancing SCA. This concept is based on comprehensive assessments of individualised impairments and functional limitations while exploring contributing environmental and personal factors affecting the person as a whole. From this assessment, individualised rehabilitation goals can be formulated through a multidisciplinary care approach. Neurologists, rehabilitation physicians, physiotherapists, occupational therapists and speech and language pathologists are key individuals involved in the multidisciplinary care for individuals with SCA rehabilitation. Two cases of individuals at different stages of SCA are presented to highlight the rehabilitation approach in providing focused interventions
    [Show full text]
  • Total Synthesis and Chemoproteomics Connect Curcusone Diterpenes with Oncogenic Protein BRAT1
    Total Synthesis and Chemoproteomics Connect Curcusone Diterpenes with Oncogenic Protein BRAT1 Chengsen Cui1†, Brendan G. Dwyer2†, Chang Liu1, Daniel Abegg2, Zhongjian Cai1, Dominic Hoch2, Xianglin Yin1, Nan Qiu2, Jieqing Liu3, Alexander Adibekian2*, Mingji Dai1* 1Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States 2Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States 3School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China Correspondence and requests for materials should be addressed to M. D. (email: [email protected]) and A. A. ([email protected]) †Contributed equally. Abstract: Natural products are an indispensable source of lifesaving medicine, but natural product-based drug discovery often suffers from scarce natural supply and unknown mode of action. The study and development of anticancer curcusone diterpenes fall into such a dilemma. Meanwhile, many biologically- validated disease targets are considered “undruggable” due to the lack of enzymatic activity and/or predicted small molecule binding sites. The oncogenic BRCA1-associated ATM activator 1 (BRAT1) belongs to such an “undruggable” category. Here, we report our synthetic and chemoproteomics studies of the curcusone diterpenes that culminate in an efficient total synthesis and the identification of BRAT1 as a cellular target. We demonstrate for the first time that BRAT1 can be inhibited by a small molecule (curcusone D), resulting in impaired DNA damage response, reduced cancer cell migration, potentiated activity of the DNA damaging drug etoposide, and other phenotypes similar to BRAT1 knockdown. 1 Natural products have been valuable sources and inspirations of lifesaving drug molecules1. Their accumulated evolutionary wisdom together with their structural novelty and diversity makes them unparalleled for novel therapeutic development.
    [Show full text]
  • Spinocerebellar Ataxia Genetic Testing
    Lab Management Guidelines V1.0.2020 Spinocerebellar Ataxia Genetic Testing MOL.TS.311.A v1.0.2020 Introduction Spinocerebellar ataxia (SCA) genetic testing is addressed by this guideline. Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline ATXN1 gene analysis, evaluation to detect 81178 abnormal (eg,expanded) allele ATXN2 gene analysis, evaluation to detect 81179 abnormal (eg,expanded) allele ATXN3 gene analysis, evaluation to detect 81180 abnormal (eg,expanded) allele ATXN7 gene analysis, evaluation to detect 81181 abnormal (eg,expanded) allele ATXN8 gene analysis, evaluation to detect 81182 abnormal (eg, expanded) alleles ATXN10 gene analysis, evaluation to 81183 detect abnormal (eg, expanded) alleles CACNA1A gene analysis; evaluation to 81184 detect abnormal (eg, expanded) alleles CACNA1A gene analysis; full gene 81185 sequence CACNA1A gene analysis; known familial 81186 variant PPP2R2B gene analysis, evaluation to 81343 detect abnormal (eg, expanded) alleles TBP gene analysis, evaluation to detect 81344 abnormal (eg, expanded) alleles Unlisted molecular pathology procedure 81479 © 2020 eviCore healthcare. All Rights Reserved. 1 of 15 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Lab Management Guidelines V1.0.2020 What is spinocerebellar ataxia Definition Spinocerebrallar ataxias (SCA) are a group of autosomal dominant ataxias that have a range of phenotypes. There are various subtypes of SCA, which are denoted by numbers (e.g. SCA1, SCA3, etc.) Incidence and Prevalence The prevalence of autosomal dominant cerebellar ataxias, as a whole, is 1-5:100,000.1 SCA3 is the most common autosomal dominant form of ataxia.
    [Show full text]
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • Spinocerebellar Ataxia 17 (SCA17) and Huntington’S Disease-Like 4 (HDL4)
    Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Giovanni Stevanin, Alexis Brice To cite this version: Giovanni Stevanin, Alexis Brice. Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4).. The Cerebellum, Springer, 2008, 7 (2), pp.170-8. 10.1007/s12311-008-0016-1. inserm- 00293796 HAL Id: inserm-00293796 https://www.hal.inserm.fr/inserm-00293796 Submitted on 26 Mar 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Stevanin & Brice, SCA7 and HDL4 1 SPINOCEREBELLAR ATAXIA 17 (SCA17) AND HUNTINGTON’S DISEASE-LIKE 4 (HDL4) GIOVANNI STEVANIN1,2,3 & ALEXIS BRICE1,2,3 1INSERM, U679, 75013 Paris, France; 2Université Pierre et Marie Curie – Paris 6, UMR S679, Institut Fédératif de Recherche en Neurosciences, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France; 3APHP, Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique et Cytogénétique, 75013 Paris, France Correspondence: Giovanni Stevanin, PhD, INSERM U679, Groupe Pitié-Salpêtrière, 47 Boulevard de l’Hôpital, 75651 Paris Cedex 13, France. E-mail: [email protected] Running title: SCA7 and HDL4 Stevanin & Brice, SCA7 and HDL4 2 Abstract Spinocerebellar ataxia 17 (SCA17) or Huntington's disease-like-4 is a neurodegenerative disease caused by the expansion above 44 units of a CAG/CAA repeat in the coding region of the TATA box binding protein (TBP) gene leading to an abnormal expansion of a polyglutamine stretch in the corresponding protein.
    [Show full text]
  • Inner Retinal Dystrophy in a Patient with Biallelic Sequence Variants in BRAT1
    Ophthalmic Genetics ISSN: 1381-6810 (Print) 1744-5094 (Online) Journal homepage: http://www.tandfonline.com/loi/iopg20 Inner retinal dystrophy in a patient with biallelic sequence variants in BRAT1 Julius T. Oatts, Jacque L. Duncan, Creig S. Hoyt, Anne M. Slavotinek & Anthony T. Moore To cite this article: Julius T. Oatts, Jacque L. Duncan, Creig S. Hoyt, Anne M. Slavotinek & Anthony T. Moore (2017) Inner retinal dystrophy in a patient with biallelic sequence variants in BRAT1, Ophthalmic Genetics, 38:6, 559-561, DOI: 10.1080/13816810.2017.1290118 To link to this article: https://doi.org/10.1080/13816810.2017.1290118 Published online: 02 Mar 2017. Submit your article to this journal Article views: 155 View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iopg20 OPHTHALMIC GENETICS 2017, VOL. 38, NO. 6, 559–561 http://dx.doi.org/10.1080/13816810.2017.1290118 CASE REPORT Inner retinal dystrophy in a patient with biallelic sequence variants in BRAT1 Julius T. Oattsa, Jacque L. Duncana, Creig S. Hoyta, Anne M. Slavotinekb, and Anthony T. Moorea,c,d aDepartment of Ophthalmology, University of California, San Francisco, San Francisco, California, USA; bDepartment of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, California, USA; cUCL Institute of Ophthalmology, University College London, London, UK; dInherited Eye Disease and Medical Retina Service, Moorfields Eye Hospital, London, UK ABSTRACT ARTICLE HISTORY Background: Mutations in the BRCA1-associated protein required for the ataxia telangiectasia mutated Received 17 October 2016 (ATM) activation-1 (BRAT1) gene cause lethal neonatal rigidity and multifocal seizure syndrome char- Revised 18 December 2016 acterized by rigidity and intractable seizures and a milder phenotype with intellectual disability, seizures, Accepted 29 January 2017 nonprogressive cerebellar ataxia or dyspraxia, and cerebellar atrophy.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Revostmm Vol 10-4-2018 Ingles Maquetaciûn 1
    108 ORIGINALS / Rev Osteoporos Metab Miner. 2018;10(4):108-18 Roca-Ayats N1, Falcó-Mascaró M1, García-Giralt N2, Cozar M1, Abril JF3, Quesada-Gómez JM4, Prieto-Alhambra D5,6, Nogués X2, Mellibovsky L2, Díez-Pérez A2, Grinberg D1, Balcells S1 1 Departamento de Genética, Microbiología y Estadística - Facultad de Biología - Universidad de Barcelona - Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - Instituto de Salud Carlos III (ISCIII) - Instituto de Biomedicina de la Universidad de Barcelona (IBUB) - Instituto de Investigación Sant Joan de Déu (IRSJD) - Barcelona (España) 2 Unidad de Investigación en Fisiopatología Ósea y Articular (URFOA); Instituto Hospital del Mar de Investigaciones Médicas (IMIM) - Parque de Salud Mar - Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES); Instituto de Salud Carlos III (ISCIII) - Barcelona (España) 3 Departamento de Genética, Microbiología y Estadística; Facultad de Biología; Universidad de Barcelona - Instituto de Biomedicina de la Universidad de Barcelona (IBUB) - Barcelona (España) 4 Unidad de Metabolismo Mineral; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC); Hospital Universitario Reina Sofía - Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES); Instituto de Salud Carlos III (ISCIII) - Córdoba (España) 5 Grupo de Investigación en Enfermedades Prevalentes del Aparato Locomotor (GREMPAL) - Instituto de Investigación en Atención Primaria (IDIAP) Jordi Gol - Centro de Investigación
    [Show full text]
  • SCA Living Well March 2020
    SCA living well March 2020 Julie Rope and Christine Tooke Senior neurological clinicians Duncan Foundation The Duncan Foundation • Aim to identify and develop clinical services that will help improve the lives of New Zealanders living with neuromuscular conditions. • Be recognised as a group of clinical leaders in the assessment and management of these conditions. • Services accessable through accredited clinicians at main centres around New Zealand. • We aim to provide a collaborative organisation that works hard to get maximum impact for people living with neuromuscular conditions. Duncan Objectives • National network of accredited clinicians • To increase nationwide therapists understanding of • the pathology of condition • the various presentation considerations • the effect of a condition on a whole person • treatment principles for management • To provide clinical support for those living with a condition • Latest research dissipated between the national network • A hub of info – visibility and awareness Affect function in everyday life Duncan Foundation Supports people living with a range of neuromuscular conditions - current focus on: Dystonia, Friedreich Ataxia, the Late Effects of Polio and Recently Diagnosed Parkinson’s… and now SCA!!! LINDSAY FOUNDATION Centre for Brain Research Neurogenetics Research Clinic!!! What to expect Contact from Schedule appt at 2 appointments Physical tests clinic Auckland Dr and (hand function, coordinator – Hospital Neurologist and walking) and Kerry Walker then with PT questionnaire. and OT Issues
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Noncoding Rnas As Novel Pancreatic Cancer Targets
    NONCODING RNAS AS NOVEL PANCREATIC CANCER TARGETS by Amy Makler A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2018 Copyright 2018 by Amy Makler ii ACKNOWLEDGEMENTS I would first like to thank Dr. Narayanan for his continuous support, constant encouragement, and his gentle, but sometimes critical, guidance throughout the past two years of my master’s education. His faith in my abilities and his belief in my future success ensured I continue down this path of research. Working in Dr. Narayanan’s lab has truly been an unforgettable experience as well as a critical step in my future endeavors. I would also like to extend my gratitude to my committee members, Dr. Binninger and Dr. Jia, for their support and suggestions regarding my thesis. Their recommendations added a fresh perspective that enriched our initial hypothesis. They have been indispensable as members of my committee, and I thank them for their contributions. My parents have been integral to my successes in life and their support throughout my education has been crucial. They taught me to push through difficulties and encouraged me to pursue my interests. Thank you, mom and dad! I would like to thank my boyfriend, Joshua Disatham, for his assistance in ensuring my writing maintained a logical progression and flow as well as his unwavering support. He was my rock when the stress grew unbearable and his encouraging words kept me pushing along.
    [Show full text]