Color in Scientific Visualization: Erp Ception and Image-Based Data Display

Total Page:16

File Type:pdf, Size:1020Kb

Color in Scientific Visualization: Erp Ception and Image-Based Data Display Rochester Institute of Technology RIT Scholar Works Theses 2-24-2008 Color in scientific visualization: erP ception and image-based data display Hongqin Zhang Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Zhang, Hongqin, "Color in scientific visualization: erP ception and image-based data display" (2008). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Color in Scientific Visualization: Perception and Image-based Data Display by Hongqin Zhang B.S. Shandong University, 1998 M.S. Changchun Institute of Optics, Fine Mechanics, and Physics, Chinese Academy of Science, 2001 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Chester F. Carlson Center for Imaging Science Rochester Institute of Technology February 24, 2008 Signature of the Author Accepted by Coordinator, Ph.D. Degree Program Date CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK CERTIFICATE OF APPROVAL Ph.D. DEGREE DISSERTATION The Ph.D. Degree Dissertation of Hongqin Zhang has been examined and approved by the dissertation committee as satisfactory for the dissertation required for the Ph.D. degree in Imaging Science Dr. Mark D. Fairchild, dissertation Advisor Dr. Ethan D. Montag, co-advisor Dr. Andrew M. Herbert Dr. David W. Messinger Date DISSERTATION RELEASE PERMISSION ROCHESTER INSTITUTE OF TECHNOLOGY CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE Title of Dissertation: Color in Scientific Visualization: Perception and Image-based Data Display I, Hongqin Zhang, hereby grant permission to Wallace Memorial Library of R.I.T. to reproduce my thesis in whole or in part. Any reproduction will not be for commer- cial use or profit. Signature Date Color in Scientific Visualization: Perception and Image-based Data Display by Hongqin Zhang Submitted to the Chester F. Carlson Center for Imaging Science in partial fulfillment of the requirements for the Doctor of Philosophy Degree at the Rochester Institute of Technology Abstract Visualization is the transformation of information into a visual display that en- hances users understanding and interpretation of the data. This thesis project has in- vestigated the use of color and human vision modeling for visualization of image-based scientific data. Two preliminary psychophysical experiments were first conducted on uniform color patches to analyze the perception and understanding of different color attributes, which provided psychophysical evidence and guidance for the choice of color space/attributes for color encoding. Perceptual color scales were then designed for univariate and bivariate image data display and their effectiveness was evaluated through three psychophysical experiments. Some general guidelines were derived for effective color scales design. Extending to high-dimensional data, two visualization techniques were developed for hyperspectral imagery. The first approach takes advan- tage of the underlying relationships between PCA/ICA of hyperspectral images and the human opponent color model, and maps the first three PCs or ICs to several opponent color spaces including CIELAB, HSV, YCbCr, and YUV. The gray world assumption was adopted to automatically set the mapping origins. The rendered images are well 5 color balanced and can offer a first look capability or initial classification for a wide variety of spectral scenes. The second approach combines a true color image and a PCA image based on a biologically inspired visual attention model that simulates the center-surround structure of visual receptive fields as the difference between fine and coarse scales. The model was extended to take into account human contrast sensitivity and include high-level information such as the second order statistical structure in the form of local variance map, in addition to low-level features such as color, luminance, and orientation. It generates a topographic saliency map for both the true color image and the PCA image, a difference map is then derived and used as a mask to select in- teresting locations where the PCA image has more salient features than available in the visible bands. The resulting representations preserve consistent natural appearance of the scene, while the selected attentional locations may be analyzed by more advanced algorithms. Acknowledgements My sincere gratitude goes to all the people who have helped me in completion of this thesis. Especially, I would like to thank my advisors, Dr. Mark D. Fairchild and Dr. Ethan D. Montag, for their support, guidance, and understanding, and my committee mem- bers, Dr. Andrew M. Herbert and Dr. David W. Messinger, for their insightful com- ments and guidance. I would also like to thank Dr. Mitch Rosen and Dr. Dave Wyble for their support and advice. It has been a great pleasure and valuable experience to work with Mitch on the skin color profiling project and work with Dave on the LCD/DLP projector colorimetric characterization project. My thanks also go to all the rest of our MCSL family, Dr. Garrett Johnson, Dr. Roy Berns, Lawrence Taplin, Colleen Desimone, Val Hemink, my classmates and friends, Yonghui (Iris) Zhao, Jiangtao (Willy) Kuang, Changmeng Liu, Rod Heckaman, all the graduate students, and our academic and support staff at the Center for Imaging Science. Lastly, my special thanks to my parents and my husband, Honghong Peng, for their love and support. Contents 1 Introduction 19 1.1 Problem Statement . 19 1.2 Research Goals . 22 1.3 Approaches Overview . 22 1.4 Document Structure . 24 2 Perception of Color Attributes on Uniform Color Patches 25 2.1 Background . 25 2.2 Experimental . 28 2.2.1 Color Space Selection . 28 2.2.2 Monitor Setup . 29 2.2.3 Viewing Conditions . 29 2.2.4 Matching Experiment . 30 2.2.5 Judgment Experiment . 33 2.3 Results and Discussion . 34 2.3.1 Matching Experiment . 34 2.3.2 Judgment Experiment . 49 2.4 Conclusions . 58 CONTENTS 8 2.5 Summary . 60 3 Visualization of Univariate and Bivariate Image Data 61 3.1 Introduction . 61 3.2 Review of Theories and Principles . 64 3.2.1 Trumbo’s Principles . 64 3.2.2 Data Type and Visual Representation . 65 3.2.3 Data Spatial Frequency and Human Vision Contrast Sensitivity 66 3.2.4 Task in Visualization . 68 3.2.5 Wainer and Francolini’s Levels of Comprehension . 70 3.3 Perceptual Color Scales Design . 71 3.3.1 Color Space Selection . 71 3.3.2 Univariate Color Scales . 71 3.3.3 Bivariate Color Scales . 72 3.4 Psychophysical Evaluation . 75 3.4.1 Experiment I . 75 3.4.2 Experiment II . 78 3.4.3 Experiment III . 79 3.5 Results and Discussion . 83 3.5.1 Experiment I . 83 3.5.2 Experiment II . 85 3.5.3 Experiment III . 89 3.6 Conclusions . 93 4 Visualization of Multispectral Image Data 95 4.1 Introduction . 95 CONTENTS 9 4.2 The Three Views of Spectral Images . 97 4.3 Visualization Requirements . 99 4.4 Review of Visualization Techniques for Spectral Images . 101 4.4.1 Band Selection Methods . 102 4.4.2 Spectral Weighting Methods . 102 4.4.3 Method Based on IHS Model . 103 4.4.4 Methods Based on Data Projection . 103 4.4.5 Methods Based on Image Fusion . 104 4.4.6 Summary . 107 4.5 Perceptual Display Strategies Based on PCA and ICA . 108 4.5.1 Background . 108 4.5.2 Perceptual rendering strategies . 110 4.5.3 Testing . 113 4.5.4 Discussion . 121 4.5.5 Conclusions . 124 4.6 Hybrid Display Algorithm Based on a Visual Attention Model . 126 4.6.1 Introduction . 126 4.6.2 Visual Attention Model . 127 4.6.3 Hybrid Display Algorithm . 128 4.6.4 Testing Results . 137 4.6.5 Discussion and Conclusions . 137 4.7 Summary . 141 5 Conclusions 143 5.1 Summary . 143 5.2 Future Work . 146 CONTENTS 10 Appendices 148 A MATLAB Scripts 148 A.1 Part I . 148 A.2 Part II . 152 A.3 Part III . 174 List of Figures 1.1 Approaches Overview of the Thesis Work . 23 2.1 The four colors used in the Matching Experiment were chosen at hue angles of 45o, 125o, 195o, and 320o in the CIECAM02 space at Light- ness, J = 70. These colors were chosen to be intermediate to the unique hues (h1, h2, h3, and h4) (the hue positions plotted in the Figure are for illustration only, not necessarily accurate). 30 2.2 Illustration of the Matching Experiment setup. The observers set matches using three different sets of slider controls: RGB, LCH, and (L,r/g,y/b). 32 2.3 The average color difference (CIEDE00) for each of the three control methods by both expert and non-expert observers. The x-axis rep- resents different control methods, and the y-axis represents matching accuracy in terms of color difference CIEDE00 where 1 unit difference is equivalent to 1 just-noticeable-difference (JND). (with error bar at a 95% confidence interval.) . 41 2.4 Average color difference (CIEDE00) and 95% confidence intervals for the main effect for the Matching Experiment: (A) Control method, (B) Observer expertise, and (C) Patch Color (hue angle). 43 LIST OF FIGURES 12 2.5 The average time (s) taken for making a match showing the main ef- fects of (A) Control method, (B) Observer expertise, and (C) Patch Color (hue angle). (with error bar at a 95% confidence interval.) . 47 2.6 The average time (s) taken for making a match by expert and non- expert observers for the three different control methods. (with error bar at a 95% confidence interval.) .
Recommended publications
  • An Improved SPSIM Index for Image Quality Assessment
    S S symmetry Article An Improved SPSIM Index for Image Quality Assessment Mariusz Frackiewicz * , Grzegorz Szolc and Henryk Palus Department of Data Science and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; [email protected] (G.S.); [email protected] (H.P.) * Correspondence: [email protected]; Tel.: +48-32-2371066 Abstract: Objective image quality assessment (IQA) measures are playing an increasingly important role in the evaluation of digital image quality. New IQA indices are expected to be strongly correlated with subjective observer evaluations expressed by Mean Opinion Score (MOS) or Difference Mean Opinion Score (DMOS). One such recently proposed index is the SuperPixel-based SIMilarity (SPSIM) index, which uses superpixel patches instead of a rectangular pixel grid. The authors of this paper have proposed three modifications to the SPSIM index. For this purpose, the color space used by SPSIM was changed and the way SPSIM determines similarity maps was modified using methods derived from an algorithm for computing the Mean Deviation Similarity Index (MDSI). The third modification was a combination of the first two. These three new quality indices were used in the assessment process. The experimental results obtained for many color images from five image databases demonstrated the advantages of the proposed SPSIM modifications. Keywords: image quality assessment; image databases; superpixels; color image; color space; image quality measures Citation: Frackiewicz, M.; Szolc, G.; Palus, H. An Improved SPSIM Index 1. Introduction for Image Quality Assessment. Quantitative domination of acquired color images over gray level images results in Symmetry 2021, 13, 518. https:// the development not only of color image processing methods but also of Image Quality doi.org/10.3390/sym13030518 Assessment (IQA) methods.
    [Show full text]
  • Investigating the Effect of Color Gamut Mapping Quantitatively and Visually
    Rochester Institute of Technology RIT Scholar Works Theses 5-2015 Investigating the Effect of Color Gamut Mapping Quantitatively and Visually Anupam Dhopade Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Dhopade, Anupam, "Investigating the Effect of Color Gamut Mapping Quantitatively and Visually" (2015). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Investigating the Effect of Color Gamut Mapping Quantitatively and Visually by Anupam Dhopade A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Print Media in the School of Media Sciences in the College of Imaging Arts and Sciences of the Rochester Institute of Technology May 2015 Primary Thesis Advisor: Professor Robert Chung Secondary Thesis Advisor: Professor Christine Heusner School of Media Sciences Rochester Institute of Technology Rochester, New York Certificate of Approval Investigating the Effect of Color Gamut Mapping Quantitatively and Visually This is to certify that the Master’s Thesis of Anupam Dhopade has been approved by the Thesis Committee as satisfactory for the thesis requirement for the Master of Science degree at the convocation of May 2015 Thesis Committee: __________________________________________ Primary Thesis Advisor, Professor Robert Chung __________________________________________ Secondary Thesis Advisor, Professor Christine Heusner __________________________________________ Graduate Director, Professor Christine Heusner __________________________________________ Administrative Chair, School of Media Sciences, Professor Twyla Cummings ACKNOWLEDGEMENT I take this opportunity to express my sincere gratitude and thank all those who have supported me throughout the MS course here at RIT.
    [Show full text]
  • COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
    COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position.
    [Show full text]
  • Basic Color I
    Basic Color I Up to this point we have explored and /or reviewed 4 several basic visual elements that will help develop a solid foundation for a Language of Painting. With a strong focus on the dynamics of paint application, we have connected simple dots with confident lines, con- figured lines into a wide array of shapes, and applied contrasting pigments in concert with varied pressures to yield seamless gradations of value. However, the previous chapter incorporated a new element that many find to be one of the most powerful tools for the creative endeavor-- color. The Painted Pressure Scale chapter, had us grow our palette from the sparse black and white that we have started with to include three colors: Red, Yellow and Blue. It is our hope that your experience generated a good number of questions from this inaugural color use. With this chapter we will take some first steps towards answering those questions. We will also revisit some of the color concepts you may already hold and introduce you to some of the more advanced methods for identifying, using and understanding this brilliant aspect of the artist’s salvo. On any initial investigation into color we are faced with a robust vocabulary of terms and concepts that may leave us somewhat confused. Like the many other aspects of our curriculum, we make a strong effort to simplify all of this. We will endeavor to make use of what you may have learned in the past and offer options for you to integrate color in the manner you wish into your creative process efficiently and effectively.
    [Show full text]
  • Applying CIECAM02 for Mobile Display Viewing Conditions
    Applying CIECAM02 for Mobile Display Viewing Conditions YungKyung Park*, ChangJun Li*, M. R. Luo*, Youngshin Kwak**, Du-Sik Park **, and Changyeong Kim**; * University of Leeds, Colour Imaging Lab, UK*, ** Samsung Advanced Institute of Technology, Yongin, South Korea** Abstract Small displays are widely used for mobile phones, PDA and 0.7 Portable DVD players. They are small to be carried around and 0.6 viewed under various surround conditions. An experiment was carried out to accumulate colour appearance data on a 2 inch 0.5 mobile phone display, a 4 inch PDA display and a 7 inch LCD 0.4 display using the magnitude estimation method. It was divided into v' 12 experimental phases according to four surround conditions 0.3 (dark, dim, average, and bright). The visual results in terms of 0.2 lightness, colourfulness, brightness and hue from different phases were used to test and refine the CIE colour appearance model, 0.1 CIECAM02 [1]. The refined model is based on continuous 0 functions to calculate different surround parameters for mobile 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 displays. There was a large improvement of the model u' performance, especially for bright surround condition. Figure 1. The colour gamut of the three displays studied. Introduction Many previous colour appearance studies were carried out using household TV or PC displays viewed under rather restricted viewing conditions. In practice, the colour appearance of mobile displays is affected by a variety of viewing conditions. First of all, the display size is much smaller than the other displays as it is built to be carried around easily.
    [Show full text]
  • Prediction of Munsell Appearance Scales Using Various Color-Appearance Models
    Prediction of Munsell Appearance Scales Using Various Color- Appearance Models David R. Wyble,* Mark D. Fairchild Munsell Color Science Laboratory, Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, New York 14623-5605 Received 1 April 1999; accepted 10 July 1999 Abstract: The chromaticities of the Munsell Renotation predict the color of the objects accurately in these examples, Dataset were applied to eight color-appearance models. a color-appearance model is required. Modern color-appear- Models used were: CIELAB, Hunt, Nayatani, RLAB, LLAB, ance models should, therefore, be able to account for CIECAM97s, ZLAB, and IPT. Models were used to predict changes in illumination, surround, observer state of adapta- three appearance correlates of lightness, chroma, and hue. tion, and, in some cases, media changes. This definition is Model output of these appearance correlates were evalu- slightly relaxed for the purposes of this article, so simpler ated for their uniformity, in light of the constant perceptual models such as CIELAB can be included in the analysis. nature of the Munsell Renotation data. Some background is This study compares several modern color-appearance provided on the experimental derivation of the Renotation models with respect to their ability to predict uniformly the Data, including the specific tasks performed by observers to dimensions (appearance scales) of the Munsell Renotation evaluate a sample hue leaf for chroma uniformity. No par- Data,1 hereafter referred to as the Munsell data. Input to all ticular model excelled at all metrics. In general, as might be models is the chromaticities of the Munsell data, and is expected, models derived from the Munsell System per- more fully described below.
    [Show full text]
  • Computational Color Harmony Based on Coloroid System
    Computational Aesthetics in Graphics, Visualization and Imaging (2005) L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Editors) Computational Color Harmony based on Coloroid System László Neumanny, Antal Nemcsicsz, and Attila Neumannx yGrup de Gràfics de Girona, Universitat de Girona, and Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain zBudapest University of Technology and Economics, Hungary xInstitute of Computer Graphics and Algorithms, Vienna University of Technology, Austria [email protected], [email protected], [email protected] (a) (b) Figure 1: (a) visualization of the overall appearance of a dichromatic color set with `caleidoscope' option of the Color Plan Designer software and (b) interactive color selection of a dichromatic color set in multi-layer mode, applying rotated regular grid. Abstract This paper presents experimentally based rules and methods for the creation of harmonic color sets. First, dichro- matic rules are presented which concern the harmony relationships of two hues. For an arbitrarily given hue pair, we define the just harmonic saturation values, resulting in minimally harmonic color pairs. These values express the fuzzy border between harmony and disharmony regions using a single scalar. Second, the value of harmony is defined corresponding to the contrast of lightness, i.e. the difference of perceptual lightness values. Third, we formulate the harmony value of the saturation contrast, depending on hue and lightness. The results of these investigations form a basis for a unified, coherent dichromatic harmony formula as well as for analysis of polychromatic color harmony. Introduced color harmony rules are based on Coloroid, which is one of the 5 6 main color-order systems and − furthermore it is an aesthetically uniform continuous color space.
    [Show full text]
  • Creating 4K/UHD Content Poster
    Creating 4K/UHD Content Colorimetry Image Format / SMPTE Standards Figure A2. Using a Table B1: SMPTE Standards The television color specification is based on standards defined by the CIE (Commission 100% color bar signal Square Division separates the image into quad links for distribution. to show conversion Internationale de L’Éclairage) in 1931. The CIE specified an idealized set of primary XYZ SMPTE Standards of RGB levels from UHDTV 1: 3840x2160 (4x1920x1080) tristimulus values. This set is a group of all-positive values converted from R’G’B’ where 700 mv (100%) to ST 125 SDTV Component Video Signal Coding for 4:4:4 and 4:2:2 for 13.5 MHz and 18 MHz Systems 0mv (0%) for each ST 240 Television – 1125-Line High-Definition Production Systems – Signal Parameters Y is proportional to the luminance of the additive mix. This specification is used as the color component with a color bar split ST 259 Television – SDTV Digital Signal/Data – Serial Digital Interface basis for color within 4K/UHDTV1 that supports both ITU-R BT.709 and BT2020. 2020 field BT.2020 and ST 272 Television – Formatting AES/EBU Audio and Auxiliary Data into Digital Video Ancillary Data Space BT.709 test signal. ST 274 Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for The WFM8300 was Table A1: Illuminant (Ill.) Value Multiple Picture Rates 709 configured for Source X / Y BT.709 colorimetry ST 296 1280 x 720 Progressive Image 4:2:2 and 4:4:4 Sample Structure – Analog & Digital Representation & Analog Interface as shown in the video ST 299-0/1/2 24-Bit Digital Audio Format for SMPTE Bit-Serial Interfaces at 1.5 Gb/s and 3 Gb/s – Document Suite Illuminant A: Tungsten Filament Lamp, 2854°K x = 0.4476 y = 0.4075 session display.
    [Show full text]
  • Development of a Methodology for Analyzing the Color Content of a Selected Group of Printed Color Analysis Systems
    AN ABSTRACT OF THE THESIS OF Edith E. Collin for the degree of Master of Sciencein Clothing, Textiles and Related Arts presented on April 7, 1986. Title: Development of a Methodology for Analyzing theColor Content of a Selected Group of Printed Color Analysis Systems Redacted for Privacy Abstract approved: Ardis Koester The purpose of this study was to develop amethodology to compare the color choice recommendationsfor each personal color analysis category identified by the authorsof selected publications. The procedure used included: (1) identification of publications with color analysis systemsdirected toward female clientele; (2) comparison of number and names of categoriesused; (3) identification, by use of Munsell colornotations, the visual and written color recommendations ascribed toeach category; and (4) comparison of the publications on the basisof: (a) number and names of categories; (b) numberof color recommendations in each category; (c) range of hue value and chroma presented;(d) comparison of visual and written color recommendations by categoryand author. With the exception of comparison of publications onthe basis of written color recommendations, all components of themethodology were successful. Comparison of the publications used in development ofthe methodology revealed that: 1. The majority of authors use the seasonal category system. 2. The number of color recommendations per category was quite consistent within a publication but varied widely among authors. 3. There were few similarities in color recommendations even among authors using the same name categories. 4. There was poor agreement between written and visual color recommendations within all color categories. 5. There was no discernable theoretical basis for the color recommendations presented by any author included in this study.
    [Show full text]
  • Color Space Conversion
    L Technical Color Space Information Conversion The role of color space conversion in the process of scanning and reproduc- ing a color image begins the moment an image is captured by a scanner and continues through the point at which it is output on film. For the purpose of this article we will discuss conversions between three types of color systems: RGB, CIE, and CMYK. The RGB (Red, Green, & Blue) and CMYK (Cyan, Magenta, Yellow, & Black) color models have been described in greater detail in the Linotype-Hell Technical information piece entitled Color in Printing. For some background information on the CIE (Commission Internationale de l’Eclairage), please refer to Color Spaces and PostScript Level 2. CIE as a reference color space Most scanners acquire color in the form of RGB data. The majority of non- photographic printing methods employ CMYK inks or toners. In a closed sys- tem, where the characteristics of both the scanner and the printing method are well-defined, conversions may be made from RGB to CMYK through tables that maintain a reasonable level of color consistency. The process becomes somewhat more difficult as you add monitors, other scanners, proofing devices or printing processes that have different characteristics. It becomes critical to have a consistent yardstick, if you will, a means of con- verting between different color systems (and back again) without a loss in color fidelity. This is what CIE provides. Let’s start with some background on CIE, and then we will look at how it can be applied in an open system. Measuring color Light reflected off of, or transmitted through a colored object can be mea- sured by the wavelengths of light that are reflected or transmitted.
    [Show full text]
  • Fast and Stable Color Balancing for Images and Augmented Reality
    Fast and Stable Color Balancing for Images and Augmented Reality Thomas Oskam 1,2 Alexander Hornung 1 Robert W. Sumner 1 Markus Gross 1,2 1 Disney Research Zurich 2 ETH Zurich Abstract This paper addresses the problem of globally balanc- ing colors between images. The input to our algorithm is a sparse set of desired color correspondences between a source and a target image. The global color space trans- formation problem is then solved by computing a smooth Source Image Target Image Color Balanced vector field in CIE Lab color space that maps the gamut of the source to that of the target. We employ normalized ra- dial basis functions for which we compute optimized shape parameters based on the input images, allowing for more faithful and flexible color matching compared to existing RBF-, regression- or histogram-based techniques. Further- more, we show how the basic per-image matching can be Rendered Objects efficiently and robustly extended to the temporal domain us- Tracked Colors balancing Augmented Image ing RANSAC-based correspondence classification. Besides Figure 1. Two applications of our color balancing algorithm. Top: interactive color balancing for images, these properties ren- an underexposed image is balanced using only three user selected der our method extremely useful for automatic, consistent correspondences to a target image. Bottom: our extension for embedding of synthetic graphics in video, as required by temporally stable color balancing enables seamless compositing applications such as augmented reality. in augmented reality applications by using known colors in the scene as constraints. 1. Introduction even for different scenes. With today’s tools this process re- quires considerable, cost-intensive manual efforts.
    [Show full text]
  • Tabla De Conversión Pantone a NCS (Natural Color System)
    Tabla de conversión Pantone a NCS (Natural Color System) PANTONE NCS (más parecido) PANTONE NCS (más parecido) Pantone Yellow C NCS 0580-Y Pantone 3985C NCS 3060-G80Y Pantone Yellow U NCS 0580-Y Pantone 3985U NCS 4040-G80Y Pantone Warm Red C NCS 0580-Y70R Pantone 3995C NCS 5040-G80Y Pantone Warm Red U NCS 0580-Y70R Pantone 3995U NCS 6020-G70Y Pantone Rubine Red C NCS 1575-R10B Pantone 400C NCS 2005-Y50R Pantone Rubine Red U NCS 1070-R20B Pantone 400U NCS 2502-R Pantone Rhodamine Red C Pantone 401C NCS 2005-Y50R Pantone Rhodamine Red U NCS 1070-R20B Pantone 401U NCS 2502-R Pantone Purple C Pantone 402C NCS 4005-Y50R Pantone Purple U NCS 2060-R40B Pantone 402U NCS 3502-R Pantone Violet C Pantone 403C NCS 4055-Y50R Pantone Violet U NCS 3050-R60B Pantone 403U NCS 4502-R Pantone Reflex Blue C NCS 3560-R80B Pantone 404C NCS 6005-Y20R Pantone Reflex Blue U NCS 3060-R70B Pantone 404U NCS 5502-R Pantone Process Blue C NCS 2065-B Pantone 405C NCS 7005-Y20R Pantone Process Blue U NCS 1565-B Pantone 405U NCS 6502-R Pantone Green C NCS 2060-B90G Pantone 406C NCS 2005-Y50R Pantone Green U NCS 2060-B90G Pantone 406U NCS 2005-Y50R Pantone Black C NCS 8005-Y20R Pantone 407C NCS 3005-Y50R Pantone Black U NCS 7502-Y Pantone 407U NCS 3005-Y80R Pantone Yellow 012C NCS 0580-Y Pantone 408C NCS 3005-Y50R Pantone Yellow 012U NCS 0580-Y Pantone 408U NCS 4005-Y80R Pantone Orange 021C NCS 0585-Y60R Pantone 409C NCS 5005-Y50R Pantone Orange 021U NCS 0580-Y60R Pantone 409U NCS 5005-Y80R Pantone Red 032C NCS 0580-Y90R Pantone 410C NCS 5005-Y50R Pantone Red 032U NCS
    [Show full text]