THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING of the GASEOUS STRUCTURE of the GALAXY: SYNTHETIC OBSERVATIONS Gilberto C

Total Page:16

File Type:pdf, Size:1020Kb

THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING of the GASEOUS STRUCTURE of the GALAXY: SYNTHETIC OBSERVATIONS Gilberto C The Astrophysical Journal, 615:758–766, 2004 November 10 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING OF THE GASEOUS STRUCTURE OF THE GALAXY: SYNTHETIC OBSERVATIONS Gilberto C. Go´mez1 Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706; [email protected] and Donald P. Cox Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706; [email protected] Receivved 2003 October 9; accepted 2004 July 15 ABSTRACT We generate synthetic observations from the four-arm model we presented previously for the Galactic ISM in the presence of a spiral gravitational perturbation. We find that velocity crowding and diffusion have a strong effect in the longitude-velocity (l-v) diagram. The velocity-latitude (v-b) diagram presents structures at the ex- pected spiral arm velocities, which can be explained by the off-the-plane structure of the arms presented in previous papers of this series. Such structures are observed in the Leiden/Dwingeloo H i survey. The rotation curve, as measured from the inside of the modeled galaxy, shows similarities with the observed one for the Milky Way, although it has large deviations from the smooth circular rotation corresponding to the background potential. The magnetic field inferred from a synthetic synchrotron map shows a largely circular structure but with interesting deviations in the midplane due to distortion of the field from circularity in the interarm regions. Subject headings:g galaxies: spiral — galaxies: structure — ISM: kinematics and dynamics — ISM: magnetic fields — MHD 1. INTRODUCTION tion in the midplane. As it shocks, the gas shoots up to higher z Our position inside the Milky Way allows us to make ob- in a way similar to water jumping over an obstacle in a river- servations at a much higher spatial resolution that we could bed. The gas then accelerates as it runs over the arm and falls do in other disk galaxies. But that same fact makes it much down behind it, generating a secondary set of shocks. In the more difficult to infer the large-scale characteristics of our two-arm cases, the gas bounces back up, generating interarm home Galaxy. A lot of the current questions of the spiral struc- structures that mimic the ones found at the arms. ture of the Milky Way could be resolved if we knew the po- In this work we focus on the four-arm case, designed to have sition and full velocity vector of the observed gas. Numerical spiral arms similar to those traced by Georgelin & Georgelin studies of large-scale Galactic structure have proved to be very (1976) as modified by Taylor & Cordes (1993). In Figure 1 valuable in discerning the sought-after characteristics. Never- we show the surface density of the four-arm model from theless, this is a very complicated problem, and so far, it is Paper II, along with the aforementioned arm pattern and the impossible to include all the physics involved. Therefore, mod- corresponding position of the Sun. Note that the scale of the elers must decide which parts of the problem are not going to spiral arms has been reduced so that the distance from the Sun be considered, in the hope that those neglected will have little to the Galactic center is 8 kpc, as in our model. In x 2wepre- influence in the overall conclusions. The models presented sent all-sky column-density maps in radial velocity ranges; in here do not include self-gravity of the gas, supernova explo- x 3 we present synthetic longitude-velocity diagrams; in x 4we sions, or other energetic events and have uncomfortably low present velocity-latitude diagrams, which we believe have a spatial resolution. They include a substantial magnetic field, a definite signature of these models; in x 5 we present the rota- high thermal pressure (to represent tangled fields, cosmic rays, tioncurvethatwouldbemeasuredinthisGalaxyasaffected and subgrid turbulence), and the extra degree of freedom of by the spiral arms; in x 6 we analyze the arm’s effect on the three dimensions. We believe these are definitive factors that measured kinematic distances in the Galactic plane; in x 7we have not been sufficiently explored. The thermal pressure was examine the rotation of gas above the midplane; in x 8we also adjusted to drop sharply at high densities to encourage the present an all-sky synchrotron map; and in x 9 we present our formation of denser structures. conclusions. In the first two papers of this series (Go´mez & Cox 2002, 2. ALL-SKY MAPS 2004, hereafter Papers I and II, respectively), we presented the results of our simulations of the ISM response to a spiral Figure 2 shows a map of the integrated column density of the gravitational perturbation. We showed that the extra stiffness simulation, as seen from the position of the observer marked in that the magnetic field adds to the gas makes it develop a Figure 1, in Galactic coordinates. The gray scale shows the combination of a shock and a hydraulic jump with significant column density, with contours in a geometric sequence and la- 3 complications added by vertical bouncing. This jump/shock beled in units of kpc cmÀ . (The reader should keep in mind leans upstream above the plane (more so in the two-arm models that our model spans only from 3 through 11 kpc in radius and than in the four-arm ones), ahead of the main gas concentra- up to 1 kpc in z. The hatched region in the Galactic center di- rection shows the angular extent of the central ‘‘hole’’ in our 1 Current address: Department of Astronomy, University of Maryland, simulation grid. In addition, the full strength of the perturba- College Park, MD 20742; [email protected]. tion is applied only for r > 5 kpc, and therefore, the useful part 758 GALAXY GASEOUS STRUCTURE: SYNTHETIC OBSERVATIONS 759 Fig. 2.—Column density of the gas for a region around the Galactic plane. The contours are in geometric sequence and labeled in units of kpc cmÀ3. The hatched region marks the inner limit of the simulation domain. velocities in the general direction of the Galactic anticenter (positive in the second quadrant, negative in the third). In ad- dition, the gas in the anticenter direction has a positive mean velocity, while the envelope of the emission averages to zero at l 170. These characteristics depend strongly on the chosen Fig. 1.—Surface density of the simulation, compared with the Milky Way’s position for the observer. Features similar to these are observed spiral arms as traced by Georgelin & Georgelin (1976) modified by Taylor & in l-v diagrams from Milky Way H i surveys, although details Cordes (1993). The position chosen for the observer in the following syn- (like the longitude of the zero velocity around the anticenter) thetic maps is also presented. The galactocentric distance for the Sun was cho- do not necessarily coincide with our model. The proximity of sen to be 8 kpc. our outer boundary (3 kpc in the anticenter direction) might have some influence on this. of the grid extends from r ¼ 5 11 kpc.) Two vertical protu- Ridges and intensity enhancements in this diagram are berances are clear in this figure, corresponding to the directions usually interpreted as spiral arms. Since in our model we have tangent to the Sagittarius arm, at l 60o and l À75.Imprints the advantage of knowing exactly where the material is and corresponding to other arms are also present; they are harder with which velocity it is moving, we can trace the gaseous to pick up in this figure but become evident when we restrict spiral arms into the simulated l-v diagram. We found the po- the line-of-sight integration to certain velocity ranges, as in sition of the spiral arms by fitting, for each radius in the sim- Figure 3. (A map with the line-of-sight component of the ulation grid, a sinusoidal function along azimuth to the vertical velocities, vlos, for the midplane is presented in Fig. 4). The column density of the gas. Figure 6 presents the result of the fit, Perseus arm appears in all the velocity ranges, but it is more while Figure 7 traces the spiral arms into the l-v diagram. Most prominent in l > 90 at negative velocities and l < À90 at of the ridges in Figure 7 correspond to spiral arms, although À1 vlos > 20 km s . Other features are also prominent: a super- the relation is not one-to-one. For example, around l ¼ 120 ,at position of the Perseus, Scutum, and Norma arms between the Perseus arm, the line of sight goes through a large velocity À1 l 0 and À60 at vlos < À20 km s ; the Sagittarius arm from gradient, which spreads the arm in velocity and diffuses the l À60 90 at intermediate negative velocities, with a very ridge. The converse also happens: lower intensity ridges that large vertical extension; and a superposition of the Sagittarius are not related to spiral arms are generated when the velocity and Scutum arms from l 0 60 for large positive velocities. gradient is small, and large spatial extents condense into a À1 À1 The diagram for 0 < vlos < 20 km s features three large small velocity range, for example, at (l; v) (À90 ; 30 km s ). column-density elements. The one at l À75 corresponds to The capacity of the velocity field to create or destroy structures the Sagittarius arm. At l 0 30 weseeanarrowstripeof in this diagram with little regard to the underlying gas density the whole inner Galaxy, including the Perseus, Scutum, and has been long known (Burton 1971; Mulder & Liem 1986).
Recommended publications
  • Eclipse Newsletter
    ECLIPSE NEWSLETTER The Eclipse Newsletter is dedicated to increasing the knowledge of Astronomy, Astrophysics, Cosmology and related subjects. VOLUMN 2 NUMBER 1 JANUARY – FEBRUARY 2018 PLEASE SEND ALL PHOTOS, QUESTIONS AND REQUST FOR ARTICLES TO [email protected] 1 MCAO PUBLIC NIGHTS AND FAMILY NIGHTS. The general public and MCAO members are invited to visit the Observatory on select Monday evenings at 8PM for Public Night programs. These programs include discussions and illustrated talks on astronomy, planetarium programs and offer the opportunity to view the planets, moon and other objects through the telescope, weather permitting. Due to limited parking and seating at the observatory, admission is by reservation only. Public Night attendance is limited to adults and students 5th grade and above. If you are interested in making reservations for a public night, you can contact us by calling 302-654- 6407 between the hours of 9 am and 1 pm Monday through Friday. Or you can email us any time at [email protected] or [email protected]. The public nights will be presented even if the weather does not permit observation through the telescope. The admission fees are $3 for adults and $2 for children. There is no admission cost for MCAO members, but reservations are still required. If you are interested in becoming a MCAO member, please see the link for membership. We also offer family memberships. Family Nights are scheduled from late spring to early fall on Friday nights at 8:30PM. These programs are opportunities for families with younger children to see and learn about astronomy by looking at and enjoying the sky and its wonders.
    [Show full text]
  • SEDIGISM-ATLASGAL: Dense Gas Fraction and Star Formation Efficiency Across the Galactic Disk
    MNRAS 000,1– ?? (2020) Preprint 4 December 2020 Compiled using MNRAS LATEX style file v3.0 SEDIGISM-ATLASGAL: Dense Gas Fraction and Star Formation Efficiency Across the Galactic Disk?† J. S. Urquhart1‡, C. Figura2, J. R. Cross1, M. R. A. Wells1, T. J. T. Moore3, D. J. Eden3, S. E. Ragan4, A. R. Pettitt5, A. Duarte-Cabral4, D. Colombo6, F. Schuller7;6, T. Csengeri8, M. Mattern9;6, H. Beuther10, K. M. Menten6, F. Wyrowski6, L. D. Anderson11;12;13, P.J. Barnes14, M. T. Beltrán15, S. J. Billington1, L. Bronfman16, A. Giannetti17, J. Kainulainen18, J. Kauffmann19 , M.-Y.Lee20, S. Leurini21, S.-N. X. Medina6, F. M. Montenegro22, M. Riener10, A. J. Rigby4, A. Sánchez-Monge23, P.Schilke23, E. Schisano24, A. Traficante24, M. Wienen25 Affiliations can be found after the references. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT By combining two surveys covering a large fraction of the molecular material in the Galactic disk we investigate the role the spiral arms play in the star formation process. We have matched clumps identified by ATLASGAL with their parental GMCs as identified by SEDIGISM, and use these giant molecular cloud (GMC) masses, the bolometric luminosi- ties, and integrated clump masses obtained in a concurrent paper to estimate the dense gas fractions (DGFgmc = ∑Mclump=Mgmc) and the instantaneous star forming efficiencies (i.e., SFEgmc = ∑Lclump=Mgmc). We find that the molecular material associated with ATLASGAL clumps is concentrated in the spiral arms (∼60 per cent found within ±10 km s−1 of an arm). We have searched for variations in the values of these physical parameters with respect to their proximity to the spiral arms, but find no evidence for any enhancement that might be attributable to the spiral arms.
    [Show full text]
  • University of Maryland Department of Physics and Astronomy
    PROPAGATION OF COSMIC RAYS IN THE GALAXY R. R. Daniel Tata Institute of Fundamental Research Homi Bhabha Road, Bombay, India and S. A. Stephens* Department of Physics & Astronomy, University of Maryland and Goddard Space Flight Center, Greenbelt, Maryland, U.S.A. Technical Report No. 75-028 UNIVERSITY OF MARYLAND DEPARTMENT OF PHYSICS AND ASTRONOMY COLLEGE PARK, MARYLAND (NASA-CR-141190) PROPAGATION OF COSMIC RAYS N75-15580 IN THE GALAXY (Maryland Univ.) 208 p HC $7.25 CSCL 03B Unclas G3/93 05074 This is a preprint of research carried out at the University of Maryland. In order to promote the active exchange of research results, individuals and groups at your institution are encouraged to send their preprints to PREPRINT LIBRARY DEPARTMENT 'OF PHYSICS AND ASTRONOMY UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND 20742 U.S.A. PROPAGATION OF COSMIC RAYS IN THE GALAXY R. R. Daniel Tata Institute of Fundamental Research Homi Bhabha Road, Bombay, India and S. A. Stephens* Department of Physics & Astronomy, University of Maryland and Goddard Space Flight Center, Greenbelt, Maryland, U.S.A. Technical Report No. 75-028 To appear in Space Science Reviews *on leave from Tata Institute of Fundamental Research, Bombay, India. CONTENTS 1. Introduction 1.1. Models of cosmic ray confinement 1.2. The galactic model for cosmic ray confinement 1.3. Scope of the present review 2. General description of the Galaxy 2.1. Dimensions and density 2.2. Structure 2.3. Interstellar gas 2.4. Magnetic fields 2.5. Radiation fields 3. Cosmic ray propagation in the Galaxy: Theoretical aspects 3.1.
    [Show full text]
  • INTEGRAL AO-12 General Programme 27 May 2014
    INTEGRAL AO-12 General Programme 27 May 2014 Normal Proposals Approved Proposal ID Title PI Country Category Approved Target Time Grade [ksec] 1220001 Regular and frequent INTEGRAL monitoring of the Galactic Bulge region Kuulkers Spain Galactic Astronomy Galactic Bulge region 529 A 1220009 Continued Observation of the Galactic Center Region with INTEGRAL Wilms Germany Galactic Astronomy Sgr A* 2000 A 1220024 Deeply X-raying the Local Universe with INTEGRAL Bottacini USA Extragalactic Astronomy 3 fields in Coma region 4000 A 1220034 INTEGRAL Earth Observations: Cosmic X-ray Background and Earth emission Türler Switzerland Nucleosynth. and diff. emission Earth/CXB 130 A 1220035 26Al line shift from the closest massive star group Krause Germany Nucleosynth. and diff. emission Sco/Cen region 3000 A 1220006 Massive Stars in the Orion Region Diehl Germany Nucleosynth. and diff. emission Orion region 1000 B 1220011 Regular INTEGRAL monitoring of the Crab Kuulkers Spain Galactic Astronomy Crab 540 B 1220014 Keeping watch over our Galaxy - the return of the GPS3 Bazzano Italy Galactic Astronomy Galactic Plane scans 1000 B 1220016 ISA: INTEGRAL Spiral Arms Monitoring Program Bodaghee USA Galactic Astronomy Norma/Perseus arm 600 B 1220017 ISA: INTEGRAL Spiral Arms Monitoring Program Bodaghee USA Galactic Astronomy Scutum/Sagittarius arm 600 B 1220018 Monitoring Known Black Hole Binaries in the Galactic Center Wilms Germany Galactic Astronomy Known BHB (DR) B 1220021 Broad view on high energy Galactic background: "Galactic Center" Sunyaev Russian Federation Nucleosynth. and diff. emission Latitude scans l=0 2000 B 1220022 Broad view on high energy Galactic background: "Norma Arm" Krivonos Russian Federation Nucleosynth.
    [Show full text]
  • Near-Infrared Spectroscopy of 20 New Chandra Sources in the Norma Arm
    A&A 568, A54 (2014) Astronomy DOI: 10.1051/0004-6361/201424006 & c ESO 2014 Astrophysics Near-infrared spectroscopy of 20 new Chandra sources in the Norma arm F. Rahoui1,2,J.A.Tomsick3, F. M. Fornasini3,4, A. Bodaghee3,5, and F. E. Bauer6,7,8 1 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 Harvard University, Department of Astronomy, 60 Garden street, Cambridge MA 02138, USA 3 Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley CA 94720-7450, USA 4 Astronomy Department, University of California, 601 Campbell Hall, Berkeley CA 94720, USA 5 Department of Chemistry, Physics, and Astronomy, Georgia College & State University CBX 82, Milledgeville GA 31061, USA 6 Instituto de Astrofísica, Facultad de Física, Pontifica Universidad Católica de Chile, 306 Santiago 22, Chile 7 Millennium Institute of Astrophysics 8 Space Science Institute, 4750 Walnut Street, Suite 205, Boulder CO 80301, USA Received 16 April 2014 / Accepted 4 June 2014 ABSTRACT We report on CTIO/NEWFIRM and CTIO/OSIRIS photometric and spectroscopic observations of 20 new X-ray (0.5–10 keV) emit- ters discovered in the Norma arm Region Chandra Survey (NARCS). NEWFIRM photometry was obtained to pinpoint the near- infrared counterparts of NARCS sources, while OSIRIS spectroscopy was used to help identify 20 sources with possible high mass X-ray binary properties. We find that (1) two sources are WN8 Wolf-Rayet stars, maybe in colliding wind binaries, part of the mas- sive star cluster Mercer
    [Show full text]
  • Combined Dynamical Effects of the Bar and Spiral Arms in a Galaxy Model
    A&A 615, A10 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833035 & c ESO 2018 Astrophysics Combined dynamical effects of the bar and spiral arms in a Galaxy model. Application to the solar neighbourhood T. A. Michtchenko, J. R. D. Lépine, D. A. Barros, and R. S. S. Vieira Universidade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, 05508-090 São Paulo, Brazil e-mail: [email protected]; [email protected]; [email protected] Received 16 March 2018 / Accepted 17 April 2018 ABSTRACT Context. Observational data indicate that the Milky Way is a barred spiral galaxy. Computation facilities and availability of data from Galactic surveys stimulate the appearance of models of the Galactic structure, however further efforts are needed to build dynamical models containing both spiral arms and the central bar/bulge. Aims. We expand the study of the stellar dynamics in the Galaxy by adding the bar/bulge component to a model with spiral arms introduced in one of our previous publications. The model is tested by applying it to the solar neighbourhood, where observational data are more precise. Methods. We model analytically the potential of the Galaxy to derive the force field in its equatorial plane. The model comprises an axisymmetric disc derived from the observed rotation curve, four spiral arms with Gaussian-shaped groove profiles, and a classical elongated/oblate ellipsoidal bar/bulge structure. The parameters describing the bar/bulge are constrained by observations and the stel- lar dynamics, and their possible limits are determined. 9 Results.
    [Show full text]
  • Arxiv:1505.03651V1 [Astro-Ph.HE] 14 May 2015 2 R
    Astron Astrophys Rev manuscript No. (will be inserted by the editor) High-Mass X-ray Binaries in the Milky Way A closer look with INTEGRAL R. Walter A. A. Lutovinov E. · · Bozzo S. S. Tsygankov · Received: December 30, 2014 / Accepted: May 12, 2015 Abstract High-mass X-ray binaries are fundamental in the study of stellar evolution, nucleosynthesis, structure and evolution of galaxies and accretion processes. Hard X-rays observations by INTEGRAL and Swift have broad- ened significantly our understanding in particular for the super-giant systems in the Milky Way, which number has increased by almost a factor of three. INTEGRAL played a crucial role in the discovery, study and understanding of heavily obscured systems and of fast X-ray transients. Most super-giant systems can now be classified in three categories: classical/obscured, eccentric and fast transient. The classical systems feature low eccentricity and variability factor of 103, mostly driven by hydrodynamic phenomena occurring on scales larger∼ than the accretion radius. Among them, systems with short orbital periods and close to Roche-Lobe overflow or with slow winds, appear highly obscured. In eccentric systems, the variability amplitude can reach even higher factors, because of the contrast of the wind density along the orbit. Four super-giant systems, featuring fast outbursts, very short orbital periods and anomalously low accretion rates, are not yet understood. Simulations of the accretion processes on relatively large scales have pro- gressed and reproduce parts of the observations. The combined effects of wind Roland Walter & Enrico Bozzo ISDC, Geneva Observatory, University of Geneva, Ch. d’Ecogia 16, CH-1290 Versoix, Switzerland.
    [Show full text]
  • Counterclockwise Magnetic Fields in the Norma Spiral
    DRAFT VERSION NOVEMBER 2, 2018 Preprint typeset using LATEX style emulateapj v. 14/09/00 COUNTERCLOCKWISE MAGNETIC FIELDS IN THE NORMA SPIRAL ARM J.L. HAN1,6 ,R.N.MANCHESTER2,A.G.LYNE3, AND G. J.QIAO4,5,6 Draft version November 2, 2018 ABSTRACT Pulsars provide unique probes of the large-scale interstellar magnetic field in the Galactic disk. Up to now, the limited Galactic distribution of the known pulsar population has restricted these investigations to within a few kiloparsec of the Sun. The Parkes multibeam pulsar survey has discovered many more-distant pulsars which enables us for the first time to explore the magnetic field in most of the nearby half of the Galactic disk. Here we report the detection of counterclockwise magnetic fields in the Norma spiral arm using pulsar rotation measures. The fields are coherent in direction over a linear scale of ∼ 5 kpc along the arm and have a strength of −4.4 ± 0.9 µG. The magnetic field between the Carina-Sagittarius and Crux-Scutum arms is confirmed to be coherent from l ∼ 45◦ to l ∼ 305◦ over a length of ∼ 10 kpc. These results strengthen arguments for a bisymmetric spiral model for the field configuration in the Galactic disk. Subject headings: ISM: magnetic fields — pulsars: general — Galaxy: structure 1. INTRODUCTION pulsars and extragalactic radio sources have revealed large- The origin of galactic magnetic fields is a long-debated issue, scale ordering of magnetic field directions in the Galactic disk, with several reversals between or within the spiral arms (e.g. which relies heavily on good observational descriptions of the structure and strength of magnetic fields in a galaxy (Zweibel Simard-Normandin& Kronberg 1980; Rand & Lyne 1994; Han & Heiles 1997; Kronberg 1994).
    [Show full text]
  • SOAR Publications Sorted by Year Then Author (Last Updated November 24, 2016 by Nicole Auza)
    No longer maintained, see home page for current information! SOAR publications Sorted by year then author (Last updated November 24, 2016 by Nicole Auza) ⇒If your publication(s) are not listed in this document, please fill in this form to enable us to keep a complete list of SOAR publications. Contents 1 Refereed papers 1 2 Conference proceedings 35 3 SPIE Conference Series 39 4 PhD theses 46 5 Meeting (incl. AAS) abstracts 47 6 Circulars 55 7 ArXiv 60 8 Other 61 1 Refereed papers (2016,2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005) 2016 [1] Alvarez-Candal, A., Pinilla-Alonso, N., Ortiz, J. L., Duffard, R., Morales, N., Santos- Sanz, P., Thirouin, A., & Silva, J. S. 2016 Feb, Absolute magnitudes and phase coefficients of trans-Neptunian objects, A&A, 586, A155 URL http://adsabs.harvard.edu/abs/2016A%26A...586A.155A [2] A´lvarez Crespo, N., Masetti, N., Ricci, F., Landoni, M., Pati˜no-Alvarez,´ V., Mas- saro, F., D’Abrusco, R., Paggi, A., Chavushyan, V., Jim´enez-Bail´on, E., Torrealba, J., Latronico, L., La Franca, F., Smith, H. A., & Tosti, G. 2016 Feb, Optical Spectro- scopic Observations of Gamma-ray Blazar Candidates. V. TNG, KPNO, and OAN Observations of Blazar Candidates of Uncertain Type in the Northern Hemisphere, AJ, 151, 32 URL http://adsabs.harvard.edu/abs/2016AJ....151...32A [3] A´lvarez Crespo, N., Massaro, F., Milisavljevic, D., Landoni, M., Chavushyan, V., Pati˜no-Alvarez,´ V., Masetti, N., Jim´enez-Bail´on, E., Strader, J., Chomiuk, L., Kata- giri, H., Kagaya, M., Cheung, C.
    [Show full text]
  • The Observed Spiral Structure of the Milky Way⋆⋆⋆
    A&A 569, A125 (2014) Astronomy DOI: 10.1051/0004-6361/201424039 & c ESO 2014 Astrophysics The observed spiral structure of the Milky Way, L. G. Hou and J. L. Han National Astronomical Observatories, Chinese Academy of Sciences, Jia-20, DaTun Road, ChaoYang District, 100012 Beijing, PR China e-mail: [lghou;hjl]@nao.cas.cn Received 21 April 2014 / Accepted 7 July 2014 ABSTRACT Context. The spiral structure of the Milky Way is not yet well determined. The keys to understanding this structure are to in- crease the number of reliable spiral tracers and to determine their distances as accurately as possible. HII regions, giant molecular clouds (GMCs), and 6.7 GHz methanol masers are closely related to high mass star formation, and hence they are excellent spiral tracers. The distances for many of them have been determined in the literature with trigonometric, photometric, and/or kinematic methods. Aims. We update the catalogs of Galactic HII regions, GMCs, and 6.7 GHz methanol masers, and then outline the spiral structure of the Milky Way. Methods. We collected data for more than 2500 known HII regions, 1300 GMCs, and 900 6.7 GHz methanol masers. If the photo- metric or trigonometric distance was not yet available, we determined the kinematic distance using a Galaxy rotation curve with the −1 −1 current IAU standard, R0 = 8.5 kpc and Θ0 = 220 km s , and the most recent updated values of R0 = 8.3 kpc and Θ0 = 239 km s , after velocities of tracers are modified with the adopted solar motions. With the weight factors based on the excitation parameters of HII regions or the masses of GMCs, we get the distributions of these spiral tracers.
    [Show full text]
  • Spiral Structure in the Milky Way: Confronting Observations and Theory
    Astronomical News Report on the ESO Workshop Spiral Structure in the Milky Way: Confronting Observations and Theory held at Bahía Inglesa, Copiapó, Chile, 8–11 November 2010 Preben Grosbøl1 Giovanni Carraro1 Yuri Beletsky1 1 ESO The main objectives of the workshop were to review current observational evidence for spiral arms in our Galaxy and confront them with models of spi- ral structure in order to arrive at a con- sistent picture. Of primary importance was to understand just what additional information is required to resolve out- standing issues related to the spiral structure in the Milky Way, especially as new survey instruments (e.g., ALMA, VISTA and VST) are coming online and major space missions like GAIA will be launched in the near future. Figure 1. The participants by the swimming pool at the range 45–408 MHz show four tan- More than 50 years ago, the spiral arms the conference venue, the Hotel Rocas de Bahía in gential points associated with synchro- Bahía Inglesa. of the Milky Way were identified in the tron radiation in spiral arms, consistent distribution of OB-stars, H II-regions and with a four-armed pattern (A. Guzmán). neutral hydrogen. An overview of the Observations early results was presented in the pro- GMCs and the massive stars in the south- ceedings of the IAU Symposium 38 held Recent observational data suggesting a ern Milky Way were identified by com- in 1969, in Basel, Switzerland. Our spiral structure in the Milky Way were bining the new Columbia survey and IRAS knowledge of the evidence for spiral arms reviewed during the first two days of the data (P.
    [Show full text]
  • Using Classical Cepheids to Study the Far Side of the Milky Way Disk. II. the Spiral Structure in the First and Fourth Galactic Quadrants
    Astronomy & Astrophysics manuscript no. aanda ©ESO 2021 July 9, 2021 Using classical Cepheids to study the far side of the Milky Way disk ? II. The spiral structure in the first and fourth Galactic quadrants J. H. Minniti1; 2; 3, M. Zoccali1; 2, A. Rojas-Arriagada1; 2, D. Minniti2; 4; 5, L. Sbordone3, R. Contreras Ramos1; 2, V. F. Braga2; 4, M. Catelan1; 2, S. Duffau4, W. Gieren2; 6, M. Marconi7, and A. A. R. Valcarce8; 9; 10 1 Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Av. Vicuña Mackenna 4860, 7820436, Macul, Santiago, Chile e-mail: [email protected] 2 Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 7820436, Macul, Santiago, Chile 3 European Southern Observatory, Alonso de Córdova 3107, Santiago, Chile 4 Departamento de Física, Facultad de Ciencias Exactas, Universidad Andrés Bello, Fernández Concha 700, Las Condes, Santiago, Chile 5 Vatican Observatory, V00120 Vatican City State, Italy 6 Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción, Chile 7 INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Naples, Italy 8 Departamento de Física, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N, CEP 44036-900 Feira de Santana, BA, Brazil 9 Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago, Chile 10 Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago, Chile Received 23 September 2020 / Accepted ABSTRACT In an effort to improve our understanding of the spiral arm structure of the Milky Way, we use Classical Cepheids (CCs) to increase the number of young tracers on the far side of the Galactic disk with accurately determined distances.
    [Show full text]