Proof of Three Conjectures: Beal's Conjecture, Riemann
Total Page:16
File Type:pdf, Size:1020Kb
PROOF OF THREE CONJECTURES: BEAL’S CONJECTURE, RIEMANN HYPOTHESIS AND ABC VERSION 1.0 - JUNE 2021 Abdelmajid Ben Hadj Salem, Ingénieur Général Abstract.— This monograph presents the proofs of 3 important conjectures in the field of Number theory: - The Beal’s conjecture. - The Riemann Hypothesis. - The abc conjecture. We give in detail all the proofs. Résumé.— Cette monographie présente les preuves de 3 conjectures im- portantes dans le domaine de la théorie des nombres: - La conjecture de Beal. - L’Hypothèse de Riemann. - La conjecture abc. Nous donnons les détails des différentes démonstrations. Abdelmajid Ben Hadj Salem, Ingénieur Général PROOFS OF THREE CONJECTURES IN NUMBER THEORY : BEAL’S CONJECTURE, RIEMANN HYPOTHESIS AND THE ABC CONJECTURE VERSION 1.0 - JUNE 2021 Abdelmajid Ben Hadj Salem, Ingénieur Général Résidence Bousten 8, Mosquée Raoudha, 1181 Soukra Raoudha, Tunisia, . E-mail : [email protected], c -2021- Abdelmajid Ben Hadj Salem - Figure 1. Photo of the Author (2011) To the memory of my Parents, to my wife Wahida, my daughter Sinda and my son Mohamed Mazen PROOFS OF THREE CONJECTURES IN NUMBER THEORY : BEAL’S CONJECTURE, RIEMANN HYPOTHESIS AND THE ABC CONJECTURE VERSION 1.0 - JUNE 2021 Abdelmajid Ben Hadj Salem, Ingénieur Général Abstract.— This monograph presents the proofs of 3 important conjectures in the field of Number theory: - The Beal’s conjecture. - The Riemann Hypothesis. - The abc conjecture. We give in detail all the proofs. Résumé.— Cette monographie présente les preuves de 3 conjectures importantes dans le domaine de la théorie des nombres à savoir: - La conjecture de Beal. - L’Hypothèse de Riemann. - La conjecture abc. Nous donnons les détails des différentes démonstrations. CONTENTS 1. A Complete Proof of Beal’s Conjecture......................................... 8 1.1. Introduction. 8 1.1.1. Trivial Case. 9 1.2. Preliminaries. 9 1.2.1. Expressions of the roots. 12 1.3. Preamble of the Proof of the Main Theorem. 15 θ 1 1.3.1. Case cos2 = ............................................................. 15 3 b 1.3.1.1. b = 1.................................................................... 15 1.3.1.2. b = 2.................................................................... 16 1.3.1.3. b = 3.................................................................... 16 θ a 1.3.2. Case a > 1, cos2 = ...................................................... 16 3 b 1.4. Hypothesis : {3|a and b|4p}................................................... 17 1.4.1. Case b = 2 and 3|a :......................................................... 17 1.4.2. Case b = 4 and 3|a :......................................................... 17 1.4.3. Case b = p and 3|a :......................................................... 17 1.4.4. Case b|p ⇒ p = b.p0, p0 > 1, b 6= 2, b 6= 4 and 3|a :.......................... 21 1.4.5. Case b = 2p and 3|a :........................................................ 25 1.4.6. Case b = 4p and 3|a :........................................................ 26 1.4.7. Case 3|a and b = 2p0 b 6= 2 with p0|p :....................................... 31 1.4.8. Case 3|a and b = 4p0 b 6= 2 with p0|p :....................................... 34 1.4.9. Case 3|a and b|4p :........................................................... 38 1.5. Hypothèse: {3|p and b|4p} .................................................... 42 1.5.1. Case b = 2 and 3|p :......................................................... 42 1.5.2. Case b = 4 and 3|p :......................................................... 42 1.5.3. Case: b 6= 2, b 6= 4, b 6= 3, b|p and 3|p :....................................... 42 1.5.4. Case b = 3 and 3|p :......................................................... 47 1.5.5. Case 3|p and b = p:.......................................................... 48 1.5.6. Case 3|p and b = 4p :........................................................ 48 1.5.7. Case 3|p and b = 2p :........................................................ 48 CONTENTS 6 1.5.8. Case 3|p and b 6= 3 a divisor of p :........................................... 48 1.5.9. Case 3|p and b|4p:........................................................... 58 1.6. Numerical Examples. 73 1.6.1. Example 1:. 73 1.6.2. Example 2:. 74 1.6.3. Example 3:. 74 1.7. Conclusion. 75 Bibliography............................................................................ 76 2. Towards A Solution of The Riemann Hypothesis............................. 77 2.1. Introduction. 77 2.1.1. The function ζ ............................................................... 78 2.1.2. A Equivalent statement to the Riemann Hypothesis. 79 1 2.2. Proof that the zeros of η(s) are on the critical line <(s) = ................... 80 2 1 2.2.1. Case σ = =⇒ 2σ = 1...................................................... 82 2 1 2.2.2. Case 0 < <(s) < ........................................................... 83 2 1 2.2.2.1. Case there is no zeros of η(s) with s = σ + it and 0 < σ < . 84 2 1 2.2.2.2. Case where there are zeros of η(s) with s = σ + it and 0 < σ < . 84 2 1 2.2.3. Case < <(s) < 1........................................................... 84 2 2.3. Conclusion. 85 Bibliography............................................................................ 87 3. Is The abc Conjecture True?...................................................... 88 3.1. Introduction and notations. 88 3.2. A Proof of the conjecture c < rad1.63(abc), case c = a + b....................... 89 0.63 3.2.1. µa ≤ rad (a) ............................................................. 90 0.63 3.2.2. µc ≤ rad (c) .............................................................. 90 0.63 0.63 3.2.3. µa > rad (a) and µc > rad (c)......................................... 90 0.63 1.63 0.63 1.63 3.2.3.1. Case: rad (c) < µc ≤ rad (c) and rad (a) < µa ≤ rad (a):. 90 1.63 1.63 3.2.3.2. Case: µc > rad (c) or µa > rad (a) ............................. 90 1.63 1.63 3.2.3.3. Case µc > rad (c) and µa > rad (a).............................. 97 3.3. The Proof of the abc conjecture................................................... 99 3.3.1. Case : ≥ 0.63 .............................................................. 99 3.3.2. Case: < 0.63............................................................... 99 3.3.2.1. Case: c > R............................................................. 99 3.3.2.2. Case: c < R.............................................................101 3.4. Conclusion........................................................................101 Bibliography............................................................................102 CONTENTS 7 List of figures...........................................................................104 List of Tables...........................................................................105 CHAPTER 1 A COMPLETE PROOF OF BEAL’S CONJECTURE Abstract.— In 1997, Andrew Beal announced the following conjecture: Let A, B, C, m, n, and l be positive integers with m, n, l > 2. If Am + Bn = Cl then A, B, and C have a common factor. We begin to construct the polynomial P (x) = (x − Am)(x − Bn)(x + Cl) = x3 − px + q with p, q integers depending of Am,Bn and Cl. 3 We resolve x − px + q = 0 and we obtain the three roots x1, x2, x3 as functions of p, q and a parameter θ. Since Am,Bn, −Cl are the only roots of x3 − px + q = 0, we discuss the conditions that x1, x2, x3 are integers and have or not a common factor. Three numerical examples are given. Résumé.— En 1997, Andrew Beal avait annoncé la conjecture suivante: Soient A, B, C, m, n, et l des entiers positifs avec m, n, l > 2. Si Am + Bn = Cl alors A, B, et C ont un facteur commun. Nous commençons par construire le polynôme P (x) = (x−Am)(x−Bn)(x+Cl) = x3 −px+q avec p, q des entiers qui dépendent de Am,Bn et Cl. Nous résolvons x3 − px + q = 0 et nous obtenons les trois racines x1, x2, x3 comme fonctions de p, q et d’un paramètre θ. Comme Am,Bn, −Cl sont les seules racines de x3 −px+q = 0, nous discutons les conditions pourque x1, x2, x3 soient des entiers. Trois exemples numériques sont présentés. 1.1. Introduction In 1997, Andrew Beal [4] announced the following conjecture : 1.2. PRELIMINARIES 9 Conjecture 1.1.— Let A, B, C, m, n, and l be positive integers with m, n, l > 2. If: (1.1) Am + Bn = Cl then A, B, and C have a common factor. In this paper, we give a complete proof of the Beal Conjecture. Our idea is to construct a polynomial P (x) of three order having as roots Am,Bn and −Cl with the condition (1.1). The paper is organized as follows. In Section 1, we begin with the trivial case where Am = Bn. In Section 2, we consider the polynomial P (x) = (x − Am)(x − Bn)(x + Cl) = x3 − px + q. We express the three roots of P (x) = x3 − px + q = 0 in function of two parameters ρ, θ that depend of Am,Bn,Cl. The Sections 3,4 and 5 are the main parts of the 4p θ paper. We write that A2m = cos2 . As A2m is an integer, it follows that 3 3 θ a cos2 must be written as where a, b are two positive coprime integers. We 3 b discuss the conditions of divisibility of p, a, b so that the expression of A2m is an integer. Depending of each individual case, we obtain that A, B, C have or not a common factor. We present three numerical examples in section 6 and we give conclusions in the last section. 1.1.1. Trivial Case. — We consider the trivial case when Am = Bn. The equation (1.1) becomes: (1.2) 2Am = Cl l ∗ m l l m then 2|C =⇒ 2|C =⇒ ∃ c ∈ N /C = 2c, it follows 2A = 2 c =⇒ A = 2l−1cl. As l > 2, then 2|Am =⇒ 2|A =⇒ 2|Bn =⇒ 2|B. The conjecture (3.1) is verified. We suppose in the following that Am > Bn. 1.2. Preliminaries ∗ ∗ Let m, n, l ∈ N > 2 and A, B, C ∈ N such: (1.3) Am + Bn = Cl 1.2. PRELIMINARIES 10 We call: P (x) = (x − Am)(x − Bn)(x + Cl) = x3 − x2(Am + Bn − Cl) (1.4) +x[AmBn − Cl(Am + Bn)] + ClAmBn Using the equation (1.3), P (x) can be written as: (1.5) P (x) = x3 + x[AmBn − (Am + Bn)2] + AmBn(Am + Bn) We introduce the notations: (1.6) p = (Am + Bn)2 − AmBn (1.7) q = AmBn(Am + Bn) As Am 6= Bn, we have : (1.8) p > (Am − Bn)2 > 0 Equation (1.5) becomes: (1.9) P (x) = x3 − px + q Using the equation (1.4), P (x) = 0 has three different real roots : Am,Bn and −Cl.