The Continental Record and the Generation of Continental Crust

Total Page:16

File Type:pdf, Size:1020Kb

The Continental Record and the Generation of Continental Crust The continental record and the 1888 2013 generation of continental crust CELEBRATING ADVANCES IN GEOSCIENCE Invited Review P.A. Cawood1,2,†, C.J. Hawkesworth1, and B. Dhuime1,3 1Department of Earth Sciences, University of St. Andrews, North Street, St. Andrews KY16 9AL, UK 2School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 3Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK ABSTRACT differs from the younger record that can be more directly related to a plate-tectonic re- 4 Continental crust is the archive of Earth gime. The paucity of this early record has led history. The spatial and temporal distribution to competing and equivocal models invoking of Earth’s record of rock units and events is plate-tectonic– and mantle-plume–domi- 2 Continents – andesite heterogeneous; for example, ages of igneous nated processes. The 60%–70% of the pres- (age range: 4000–0 Ma) crystallization, metamorphism, continental ent volume of the continental crust estimated margins, mineralization, and sea water and to have been present at 3 Ga contrasts mark- 0 atmospheric proxies are distributed about a edly with the <10% of crust of that age ap- series of peaks and troughs. This distribution parently still preserved and requires on going refl ects the different preservation potential of destruction (recycling) of crust and sub- –2 Oceans – basalt rocks generated in different tectonic settings, conti nental mantle lithosphere back into the Elevation (km) (age range: 180–0 Ma) rather than fundamental pulses of activity, mantle through processes such as subduction and the peaks of ages are linked to the tim- and delamination. –4 ing of supercontinent assembly. The physio- chemical resilience of zircons and their INTRODUCTION derivation largely from felsic igneous rocks –6 means that they are important indicators of Earth has a bimodal surface elevation re- the crustal record. Furthermore, detrital zir- fl ecting the contrasting chemical-mechanical cons, which sample a range of source rocks, properties of continental and oceanic crust. The 5101520 provide a more representative record than latter is dense, gravitationally unstable, and % of surface direct analysis of grains in igneous rocks. hence young, whereas continental crust is buoy- Figure 1. Bimodal distribution of surface Analysis of detrital zircons suggests that at ant and represents the archive of Earth history ele vations on Earth, relative to sea-level, em- least ~60%–70% of the present volume of (Fig. 1), not only of the crust itself but through phasizing the contrasting physical-chemical the continental crust had been generated by the rock record of the atmosphere, hydrosphere, properties of continental and ocean crust. 3 Ga. Such estimates seek to take account of and biosphere, and of the mantle through its Figure is adapted from Taylor and McLennan the extent to which the old crustal material is interactions with the crust. Over 4.5 b.y., the (1985, 1996). underrepresented in the sedimentary record , continental crust has evolved to form the envi- and they imply that there were greater vol- ronment in which we live and the resources on umes of continental crust in the Archean which we depend. An understanding of the crust than might be inferred from the composi- and its record is fundamental to resolving ques- how the continental crust was generated, and tions of detrital zircons and sediments. The tions on the origin of life, the evolution and oxy- to discuss constraints on the rates of continen- growth of continental crust was a continu- genation of our atmosphere, past climates, mass tal growth through time and the relationship ous rather than an episodic process, but extinctions, the thermal evolution of Earth, and to tectonic processes, especially the role of the there was a marked decrease in the rate of the interactions between the surfi cial and deep supercontinent cycle in controlling the geologi- crustal growth at ca. 3 Ga, which may have Earth. Yet, when and how the continental crust cal record. We explore the information available been linked to the onset of signifi cant crustal was generated, the volume of continental crust from the zircon record, since igneous zircons recycling, probably through subduction at through Earth history, and whether it provides a preserved as detritus in sedimentary rocks are convergent plate margins. The Hadean and representative record remain fundamental ques- increasingly regarded as a key temporal record Early Archean continental record is poorly tions in the earth sciences. of the activity associated with the generation preserved and characterized by a bimodal Our aim in this paper is fi rst briefl y to outline and evolution of the continental crust. TTG (tonalites, trondhjemites, and grano- the general character of the crust and to clarify Views on the evolution of the continen- diorites) and greenstone association that the terms used, and then to explore the nature of tal crust have changed dramatically as ideas the continental record that is available for study, on geological processes have evolved and as †E-mail: [email protected] to evaluate different approaches for when and methods to interrogate the rock record have GSA Bulletin; January/February 2013; v. 125; no. 1/2; p. 14–32; doi:10.1130/B30722.1; 15 fi gures. 14 For permission to copy, contact [email protected] © 2013 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/125/1-2/14/3713781/14.pdf by guest on 23 September 2021 The continental record and the generation of continental crust advanced through developments in stratigraphic analysis, petrography, paleontology, geochemis- try, geochronology, geophysics, and modeling. Crucially, our understanding of the processes in- volved in the generation and the evolution of the continental crust has grown enormously through the latter part of the twentieth and beginning of the twenty-fi rst centuries following on from the development and acceptance of plate-tectonic theory. This has focused our research on plate margins, the sites of continental crust forma- tion and stabilization, and it has resulted in a fundamental change in the way we approach our interrogation of Earth and its record from a descriptive documentation of units and events into investigation into the processes controlling these features. A factor critical to determining these processes is an understanding of rates of change, and this has been facilitated by devel- opments in data collection and analysis. This expansion of knowledge has been particularly important in further understanding not just the exposed surfi cial rock record, but in gaining in- sight into the composition and development of the whole crust. In particular, this has led to new ideas into what shaped the record, and how rep- resentative, or unrepresentative, it may be. Figure 2. Contour map of the thickness of Earth’s crust (developed from model CRUST 5.1). SOME FACTS AND TERMINOLOGY The contour interval is 10 km (45 km contour interval is also shown to provide greater detail on the continents). To a fi rst approximation, the continents and their margins are outlined The total area of continental crust is 210.4 × by the 30 km contour. Source of fi gure: http://earthquake.usgs.gov/research/structure/crust 6 2 10 km , or some 41% of the surface area of /index.php. Earth, and the volume is 7.2 × 109 km3, which constitutes some 70% of Earth’s crustal vol- ume (Cogley, 1984). The crust extends ver- is conductive, and the base is a rheological a hetero geneous middle crust assemblage of tically from the surface to the Mohorovičić boundary with the isothermal convecting mantle ortho gneiss and paragneiss at amphibolite discontinuity (Moho) and laterally to the break (Sleep, 2005). facies to lower granulite facies (Fig. 3C), and a in slope in the continental shelf (Rudnick and Continents include cratons, areas of stable lower crust consisting of granulite-facies coun- Gao, 2003). The Moho is defi ned as the jump in crust, orogenic belts, and regions of continental try rocks and basic intrusive rocks and/or cumu- seismic primary waves (P-waves) to greater than extension, which form either intracratonic rifts lates (Rudnick and Fountain, 1995; Wedepohl, ~7.6 km s–1. This change in seismic-wave veloc- or develop into zones of continental breakup 1995; Rudnick and Gao, 2003). Thicknesses of ity is taken as a fi rst-order approximation of the and thermal subsidence (passive margins). the three crustal layers vary, but the upper and boundary between mafi c lower-crustal rock and Orogens evolve through one or more cycles of middle crustal sections generally form around ultramafi c mantle peridotite: the crust-mantle sedimentation, subsidence, and igneous activ- 30% each of a typical crustal profi le, with the boundary. Petrologic studies from exposed sec- ity punctuated by tectonothermal events (orog- lower crust forming the remaining 40% (Fig. 5; tions of ocean fl oor (ophiolites) and from xeno- enies), involving deformation, metamorphism, Rudnick and Gao, 2003; Hawkesworth and liths in continental settings suggest that in some and igneous activity, which result in thickening Kemp, 2006a). situations, the crust-mantle boundary may dif- and stabilization of the lithosphere (Figs. 3A The bulk composition of the crust is equiva- fer from the Moho (Malpas, 1978; Griffi n and and 3B). Cratons are ancient orogens that have lent to andesite (Fig. 3D) and requires two O’Reilly, 1987). generally been undeformed and tectonically stages of formation involving extraction of The mean elevation of the continental crust stable for long periods of time, often since the mafi c magmas from the mantle and their dif- is around 125 m (Fig. 1), and some 31% of Archean, and are divisible into shields, which ferentiation through either fractional crystalliza- the crustal area is below sea level.
Recommended publications
  • Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling” by N
    CORRECTED 21 MAY 2010; SEE LAST PAGE REPORTS 13. J. Helbert, A. Maturilli, N. Mueller, in Venus Eds. (U.S. Geological Society Open-File Report 2005- M. F. Coffin, Eds. (Monograph 100, American Geophysical Geochemistry: Progress, Prospects, and New Missions 1271, Abstracts of the Annual Meeting of Planetary Union, Washington, DC, 1997), pp. 1–28. (Lunar and Planetary Institute, Houston, TX, 2009), abstr. Geologic Mappers, Washington, DC, 2005), pp. 20–21. 44. M. A. Bullock, D. H. Grinspoon, Icarus 150, 19 (2001). 2010. 25. E. R. Stofan, S. E. Smrekar, J. Helbert, P. Martin, 45. R. G. Strom, G. G. Schaber, D. D. Dawson, J. Geophys. 14. J. Helbert, A. Maturilli, Earth Planet. Sci. Lett. 285, 347 N. Mueller, Lunar Planet. Sci. XXXIX, abstr. 1033 Res. 99, 10,899 (1994). (2009). (2009). 46. K. M. Roberts, J. E. Guest, J. W. Head, M. G. Lancaster, 15. Coronae are circular volcano-tectonic features that are 26. B. D. Campbell et al., J. Geophys. Res. 97, 16,249 J. Geophys. Res. 97, 15,991 (1992). unique to Venus and have an average diameter of (1992). 47. C. R. K. Kilburn, in Encyclopedia of Volcanoes, ~250 km (5). They are defined by their circular and often 27. R. J. Phillips, N. R. Izenberg, Geophys. Res. Lett. 22, 1617 H. Sigurdsson, Ed. (Academic Press, San Diego, CA, radial fractures and always produce some form of volcanism. (1995). 2000), pp. 291–306. 16. G. E. McGill, S. J. Steenstrup, C. Barton, P. G. Ford, 28. C. M. Pieters et al., Science 234, 1379 (1986). 48.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth Permalink https://escholarship.org/uc/item/9v96g1j5 Author Reinhard, Christopher Thomas Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geological Sciences by Christopher Thomas Reinhard September 2012 Dissertation Committee: Dr. Timothy W. Lyons, Chairperson Dr. Gordon D. Love Dr. Nigel C. Hughes ! Copyright by Christopher Thomas Reinhard 2012 ! ! The Dissertation of Christopher Thomas Reinhard is approved: ________________________________________________ ________________________________________________ ________________________________________________ Committee Chairperson University of California, Riverside ! ! ACKNOWLEDGEMENTS It goes without saying (but I’ll say it anyway…) that things like this are never done in a vacuum. Not that I’ve invented cold fusion here, but it was quite a bit of work nonetheless and to say that my zest for the enterprise waned at times would be to put it euphemistically. As it happens, though, I’ve been fortunate enough to be surrounded these last years by an incredible group of people. To those that I consider scientific and professional mentors that have kept me interested, grounded, and challenged – most notably Tim Lyons, Rob Raiswell, Gordon Love, and Nigel Hughes – thank you for all that you do. I also owe Nigel and Mary Droser a particular debt of graditude for letting me flounder a bit my first year at UCR, being understanding and supportive, and encouraging me to start down the road to where I’ve ended up (for better or worse).
    [Show full text]
  • Cretaceous Paleoceanography
    GEOLOGIC A CARPATH1CA, 46, 5, BRATISLAVA, OCTOBER 1995 257 - 266 CRETACEOUS PALEOCEANOGRAPHY A v Z XI06ER WILLIAM W. HAY BORE* CRETACEOUS GEOMAR, Wischhofstr. 1-3, D-24148 Kiel, Germany Department of Geological Sciences and Cooperative Institute for Research in Environmental Sciences, Campus Box 250, University of Colorado, Boulder, CO 80309, USA (Manuscript received January 17, 1995; accepted in revised form June 14, 1995) Abstract: The modem ocean is comprised of four units: an equatorial belt shared by the two hemispheres, tropical-subtropi­ cal anticyclonic gyres, mid-latitude belts of water with steep meridional temperature gradients, and polar oceans characterized by cyclonic gyres. These units are separated by lines of convergence, or fronts: subequatorial, subtropical, and polar. Con­ vergence and divergence of the ocean waters are forced beneath zonal (latitude-parallel) winds. The Early Cretaceous ocean closely resembled the modem ocean. The developing Atlantic was analogous to the modem Mediterranean and served as an Intermediate Water source for the Pacific. Because sea-ice formed seasonally in the Early Cretaceous polar seas, deep water formation probably took place largely in the polar region. In the Late Cretaceous, the high latitudes were warm and deep waters moved from the equatorial region toward the poles, enhancing the ocean’s capacity to transport heat poleward. The contrast between surface gyre waters and intermediate waters was less, making them easier to upwell, but be­ cause their residence time in the oxygen minimum was less and they contained less nutrients. By analogy to the modem ocean, ’’Tethyan” refers to the oceans between the subtropical convergences and ’’Boreal” refers to the ocean poleward of the subtropical convergences.
    [Show full text]
  • Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew
    GEOLOGY – Vol. II - Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew ORIGIN, TEXTURE, AND CLASSIFICATION OF METAMORPHIC ROCKS Teklewold Ayalew Addis Ababa University, Ethiopia Keywords: aluminosilicates, assemblage, fabric, foliation, gneissose banding, index mineral, isograd, lineation, lithosphere, metamorphic facies, metasomatism, orogenic belt, schistosity Contents 1. Introduction 2. Occurrence 2.1. Orogenic Metamorphism 2.2. Contact Metamorphism 2.3. Ocean Floor Metamorphism 3. Classification 4. Minerals of Metamorphic Rocks 5. Metamorphic Facies 5.1. Facies of Very Low Grade 5.2. Greenschist Facies 5.3. Amphibolite Facies 5.4. Granulite Facies 5.5. Hornblende Hornfels Facies 5.6. Pyroxene Hornfels Facies 5.7. Blueschist Facies 5.8. Eclogite Facies 6. Tectonic Setting of Metamorphic Facies 7. Textures 7.1. Layering, Banding, and Fabric Development 8. Kinetics 8.1. Diffusion 8.2. Nucleation 8.3. Crystal Growth AcknowledgmentUNESCO – EOLSS Glossary Bibliography Biographical SketchSAMPLE CHAPTERS Summary Metamorphic rocks are igneous, sedimentary, or other metamorphic rocks whose texture and composition has been changed by metamorphism. Metamorphism occurs as a response to changes in the physical or chemical environment of any pre-existing rock, such as variations in pressure or temperature, strain, or the infiltration of fluids. It involves recrystallization of existing minerals into new grains and/or the appearance of new mineral phases and breakdown of others. Metamorphic processes take place ©Encyclopedia of Life Support Systems (EOLSS) GEOLOGY – Vol. II - Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew essentially in the solid state. The rock mass does not normally disaggregate and lose coherence entirely; however small amounts of fluids are frequently present and may play an important catalytic role.
    [Show full text]
  • SVP's Letter to Editors of Journals and Publishers on Burmese Amber And
    Society of Vertebrate Paleontology 7918 Jones Branch Drive, Suite 300 McLean, VA 22102 USA Phone: (301) 634-7024 Email: [email protected] Web: www.vertpaleo.org FEIN: 06-0906643 April 21, 2020 Subject: Fossils from conflict zones and reproducibility of fossil-based scientific data Dear Editors, We are writing you today to promote the awareness of a couple of troubling matters in our scientific discipline, paleontology, because we value your professional academic publication as an important ‘gatekeeper’ to set high ethical standards in our scientific field. We represent the Society of Vertebrate Paleontology (SVP: http://vertpaleo.org/), a non-profit international scientific organization with over 2,000 researchers, educators, students, and enthusiasts, to advance the science of vertebrate palaeontology and to support and encourage the discovery, preservation, and protection of vertebrate fossils, fossil sites, and their geological and paleontological contexts. The first troubling matter concerns situations surrounding fossils in and from conflict zones. One particularly alarming example is with the so-called ‘Burmese amber’ that contains exquisitely well-preserved fossils trapped in 100-million-year-old (Cretaceous) tree sap from Myanmar. They include insects and plants, as well as various vertebrates such as lizards, snakes, birds, and dinosaurs, which have provided a wealth of biological information about the ‘dinosaur-era’ terrestrial ecosystem. Yet, the scientific value of these specimens comes at a cost (https://www.nytimes.com/2020/03/11/science/amber-myanmar-paleontologists.html). Where Burmese amber is mined in hazardous conditions, smuggled out of the country, and sold as gemstones, the most disheartening issue is that the recent surge of exciting scientific discoveries, particularly involving vertebrate fossils, has in part fueled the commercial trading of amber.
    [Show full text]
  • Experimental Early Crystallization of K-Feldspar in Granitic Systems. Implications on the Origin of Magmatic Fabrics in Granitic Rocks
    Geologica Acta, Vol.15, Nº 4, December 2017, 261-281 DOI: 10.1344/GeologicaActa2017.15.4.2 J. Díaz-Alvarado, 2017 CC BY-SA Experimental early crystallization of K-feldspar in granitic systems. Implications on the origin of magmatic fabrics in granitic rocks J. DÍAZ-ALVARADO1 1Departamento de Geología. Universidad de Atacama Copayapu 485, Copiapó, Chile. E-mail: [email protected] ABS TRACT One of the most outstanding characteristics of some granodioritic to granitic rocks is the presence of K-feldspar megacrysts. For instance, granodiorites and monzogranites of the Spanish Central System batholith present variable amounts of large (up to 10cm in length) euhedral K-feldspar crystals. The porphyritic textures, the euhedral shape, the alignment of plagioclase and biotite inclusions and the magmatic fabrics point to a magmatic origin for these megacrysts. This work presents a phase equilibria study in a high-K2O granodioritic system. A series of experiments were conducted with a granodioritic composition (GEMbiot) to study the crystallization sequence at the emplacement conditions in the Gredos massif, i.e. 4 H2O wt.% and 0.4GPa. Experimental results show that orthopiroxene is the liquidus phase at 1010ºC, which reacts with the H2O-rich melt to stabilize biotite between 980 and 940ºC. Plagioclase crystallizes at around 910ºC, and K-feldspar crystallizes in the matrix between 750 and 700ºC when the crystal fraction is around 0.5. However, at 850ºC, a pelite-doped experiment shows euhedral K-feldspar (≈5vol%) in both the reactive xenolith domain together with cordierite and the granodioritic domain, where the K2O wt.% rose from 4.5 in the normal experiment to 5.9 in the doped experiment.
    [Show full text]
  • The U-Series Toolbox for Paleoceanography
    The U-series toolbox for paleoceanography Gideon M. Henderson Department of Earth Sciences, Oxford University, South Parks Road, Oxford, OX1 3PR, ENGLAND. e-mail: [email protected] Robert F. Anderson Lamont-Doherty Earth Observatory of Columbia University, Route 9W, Palisades, NY 10964, USA. e-mail: [email protected] Reviews in Mineralogy and Geochemistry "Uranium Series Geochemistry" Revised Version 1 1. Introduction The geochemistry of marine sediments is a major source of information about the past environment. Of the many measurements that provide such information, those of the U-series nuclides are unusual in that they inform us about the rate and timescales of processes. Oceanic processes such as sedimentation, productivity, and circulation, typically occur on timescales too short to be assessed using parent-daughter isotope systems such as Rb-Sr or Sm-Nd. So the only radioactive clocks that we can turn to are those provided by cosmogenic nuclides (principally 14C) or the U-series nuclides. This makes the U-series nuclides powerful allies in the quest to understand the past ocean-climate system and has led to their widespread application over the last decade. As in other applications of the U-series, those in paleoceanography rely on fractionation of the nuclides away from secular equilibrium. In the oceanic setting, this fractionation is generally due to differences in the solubility of the various nuclides. The general behavior of the U-series nuclides in the oceans was widely researched in the middle decades of the twentieth century. This work established knowledge of the concentrations of the nuclides in the various compartments of the ocean system, and of their fluxes between these compartments.
    [Show full text]
  • A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
    Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks
    [Show full text]
  • Rocks and Geology: General Information
    Rocks and Geology: General Information Rocks are the foundation of the earth. Rock provides the firmament beneath our oceans and seas and it covers 28% of the earth's surface that we all call home. When we travel any distance in any given direction, it is impossible not to see the tremendous variety in color, texture, and shape of the rocks around us. Rocks are composed of one or more minerals. Limestone, for example, is composed primarily of the mineral calcite. Granite can be made up of the minerals quartz, orthoclase and plagioclase feldspars, hornblende, and biotite mica. Rocks are classified by their mineral composition as well as the environment in which they were formed. There are three major classifications of rocks: igneous, sedimentary and metamorphic. A question: Which kind of rock came first? Think about it....... The following sections describe the conditions and processes that create the landscape we admire and live on here on "terra firma." IGNEOUS ROCKS The millions of tons of molten rock that poured out of the volcano Paracutin in Mexico, and from the eruption of Mount St. Helens in Washington State illustrate one of the methods of igneous rock formation. Igneous (from fire) rocks are formed when bodies of hot liquid rock called magma located beneath the earth's crust, find their way upward through the crust by way of fissures or faults. If the magma reaches the earth's surface, it forms extrusive igneous rocks or volcanic rocks. If the magma cools before it reaches the surface, it forms bodies of rock called intrusive igneous rocks or plutonic rocks.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Investigation of The
    UNIVERSITY OF CALIFORNIA RIVERSIDE Investigation of the Composition and Preservation Potential of Precambrian Sedimentary Organic Matter and Lipid Biosignatures A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geological Sciences by Kelden Pehr June 2020 Dissertation Committee: Dr. Gordon D. Love, Chairperson Dr. Andrey Bekker Dr. Marilyn Fogel Copyright by Kelden Pehr 2020 The Dissertation of Kelden Pehr is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGMENTS This research was made possible through funding and support from the NASA Earth and Space Science Fellowship (17-PLANET17R-0019), the Earle C Anthony Award and the UCR Dissertation Year Fellowship. I am very grateful to my advisor Gordon Love, whose support and guidance has been invaluable over these past years. I would like to thank my qualifying exams and defense committee members as follows: Andrey Bekker for the many opportunities and great conversations; Marilyn Fogel for the encouragement and excellent discussions on all things biogeochemical; Mary Dorser for welcoming me as an honorary member of the Droser lab; and Francesca Hopkins for asking the big questions. Rose Bisquera, Carina Lee, Alex Zumberge, JP Duda, Adam Hoffman, Nathan Marshall, and Adriana Rizzo were all wonderful lab mentors and mates. Steven Bates and Laurie Graham provided much needed support in the dark hours of instrument failure. Aaron Martinez deserves a special shout out for the awesome adventures, fantastic food, and long hours of laughter. I have had the pleasure to work with an amazing cast of collaborators, without whom, this research presented here would not have been possible.
    [Show full text]
  • Towards a Unified Nomenclature in Metamorphic Petrology
    8. Amphibolite and Granulite Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 01.02.07 1José Coutinho, 2Hans Kräutner, 3Francesco Sassi, 4Rolf Schmid and 5Sisir Sen. 1 J. Coutinho, University of São Paulo, São Paulo, Brazil 2 L M University, Munich, Germany 3 F. Sassi, Department of Mineralogy and Petrography, University of Padova, Italy 4 R. Schmid, ETH-Centre, Zürich, Switzerland 5 S. Sen, Indian Institute of Technology, Kharagpur, India Introduction This paper summarises the results of the discussions by the SCMR, and the response to circulars distributed by the SCMR, which demonstrated the highly variable usage of the terms granulite and amphibolite. It presents those definitions which currently seem to be the most appropriate ones. Some notes are included in order to explain the reasoning behind the suggested definitions. In considering the definitions it is important to remember that some of them are a compromise of highly different, even conflicting, opinions and traditions. The names amphibolite and granulite have been used in geological literature for nearly 200 years: amphibolite since Brongniart (1813), granulite since Weiss (1803). Although Brongniart described amphibolite as a rock composed of amphibole and plagioclase, in those early days the meaning of the term was variable. Only later (e.g. Rosenbusch, 1898) was it fixed as metamorphic rock consisting of hornblende and plagioclase, and of medium to high metamorphic grade. In contrast, the use of the name granulite was highly variable, a position which was further complicated by the introduction of the facies principle (Eskola, 1920, 1952) when the name granulite was proposed for all rocks of the granulite facies.
    [Show full text]
  • Epidote-Bearing Calc-Alkalic Granitoids in Northeast Brazil
    Revista Brasileira de Geociências 20(1-4): 88-100, março/dezembro de 1990 EPIDOTE-BEARING CALC-ALKALIC GRANITOIDS IN NORTHEAST BRAZIL ALCIDES NÓBREGA SIAL* RESUMO GRANITÓIDES COM EPÍDOTO MAGMÁTICO NO NORDESTE DO BRASIL. Um grande número de granitóides cálcio-alcalinos com epidoto são encontrados no Domínio Estrutural Central (DEC) - que compreende três segmentos: Seridó, Cachoeirinha-Salgueiro e Riacho do Pontal - e em algu- mas outras localidades no Nordeste do Brasil. No cinturão Cachoerinha-Salgueiro (CCS), granodioritos e tonalitos com epidoto, meta a peraluminosos, intrudiram fllitos há cerca de 620 Ma, enquanto no Seridó, uma maior variedade de plutões com epfdoto fgneo intrudiu gnaisses Jucurutu ou xistos Seridó. Granodio- ritos com duas micas com (±) granada e epfdoto ígneo (?) intrudiram metassedimentos do Cinturão Riacho do Pontal. Epídoto magmático está também presente nos plutões trondhjemítícos e shoshonítícos - que in- trudiram, respectivamente, xistos Salgueiro e rochas de embasamento ao longo do limite sul do CCS - bem como em plutões no Complexo Surubim-Caroalina e nos cinturões Pajed-Paraíba e Sergipano. E encontra- do em quatro relações texturais, duas das quais indiscutivelmente magmáticas, e duas outras de reações sub- solidus. No CCS, granitóides com epfdoto solidificaram-se geralmente em torno de 6 kbar - 7 kbar, de acor- do com seus teores de Al na homblenda. Pressões mais baixas obtidas para encraves quartzo - dioríticos são devidas à perda de Al através de reação subsolidus com plagioclásio, produzindo epídoto granular. Diferem de granitóides mesozóicos similares na América do Norte porque, embora suas pressões de solidificação se- jam altas, eles intrudiram tanto metassedimentos da fácies xistos verdes como plutões paleozóicos na Argen- tina (Cadeias Pampeanas), Nova Inglaterra (área de Sherbrooke-Lewiston) e Nova Zelândia (Cadeia de Vi- tória).
    [Show full text]