Tree and Shrub Vegetation Guide for Required Landscaping, Plant Units and Buffers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SALT TOLERANT PLANTS Recommended for Pender County Landscapes
North Carolina Cooperative Extension NC STATE UNIVERSITY SALT TOLERANT PLANTS Recommended for Pender County Landscapes Pender County Cooperative Extension Urban Horticulture Leaflet 14 Coastal Challenges Plants growing at the beach are subjected to environmental conditions much different than those planted further inland. Factors such as blowing sand, poor soils, high temperatures, and excessive drainage all influence how well plants perform in coastal landscapes, though the most significant effect on growth is salt spray. Most plants will not tolerate salt accumulating on their foliage, making plant selection for beachfront land- scapes particularly challenging. Salt Spray Salt spray is created when waves break on the beach, throwing tiny droplets of salty water into the air. On-shore breezes blow this salt laden air landward where it comes in contact with plant foliage. The amount of salt spray plants receive varies depending on their proximity to the beachfront, creating different vegetation zones as one gets further away from the beachfront. The most salt-tolerant species surviving in the frontal dune area. As distance away from the ocean increases, the level of salt spray decreases, allowing plants with less salt tolerance to survive. Natural Protection The impact of salt spray on plants can be lessened by physically blocking salt laden winds. This occurs naturally in the maritime forest, where beachfront plants protect landward species by creating a layer of foliage that blocks salt spray. It is easy to see this effect on the ocean side of maritime forest plants, which are “sheared” by salt spray, causing them to grow at a slant away from the oceanfront. -
Western Juniper Woodlands of the Pacific Northwest
Western Juniper Woodlands (of the Pacific Northwest) Science Assessment October 6, 1994 Lee E. Eddleman Professor, Rangeland Resources Oregon State University Corvallis, Oregon Patricia M. Miller Assistant Professor Courtesy Rangeland Resources Oregon State University Corvallis, Oregon Richard F. Miller Professor, Rangeland Resources Eastern Oregon Agricultural Research Center Burns, Oregon Patricia L. Dysart Graduate Research Assistant Rangeland Resources Oregon State University Corvallis, Oregon TABLE OF CONTENTS Page EXECUTIVE SUMMARY ........................................... i WESTERN JUNIPER (Juniperus occidentalis Hook. ssp. occidentalis) WOODLANDS. ................................................. 1 Introduction ................................................ 1 Current Status.............................................. 2 Distribution of Western Juniper............................ 2 Holocene Changes in Western Juniper Woodlands ................. 4 Introduction ........................................... 4 Prehistoric Expansion of Juniper .......................... 4 Historic Expansion of Juniper ............................. 6 Conclusions .......................................... 9 Biology of Western Juniper.................................... 11 Physiological Ecology of Western Juniper and Associated Species ...................................... 17 Introduction ........................................... 17 Western Juniper — Patterns in Biomass Allocation............ 17 Western Juniper — Allocation Patterns of Carbon and -
Small Size Plants Fall 2019
small size plants Fall 2019 Item number Name pot size 28501 Abies koreana 'Cis' #1 29501 Abies koreana 'Ice Breaker' #1 30401 Abies koreana 'Silberperle' #1 31501 Abies koreana 'Wellenseind' #1 36001 Abies nordmanniana 'Hupp's Perfect Pillar' #1 10710001 Acer palmatum 'Bihou' #1 10750000J Acer palmatum 'Butterfly' 6" RGP 10750001 Acer palmatum 'Butterfly' #1 10885001 Acer palmatum 'Katsura' #1 10916000J Acer palmatum 'Koto-no-Ito' 6" RGP 10950400J Acer palmatum 'Mikawa yatsubusa' 6" RGP 11011000J Acer palmatum 'Rhode Island Red' 6" RGP 11050001 Acer palmatum 'Sango kaku' #1 11020000J Acer palmatum 'Sharp's Pygmy' 6" RGP 11130501 Acer palmatum 'Shindeshojo' #1 11061401 Acer palmatum 'Twombly's Red Sentinel' #1 11320000J Acer palmatum dissectum 'Crimson Queen' 6" RGP 11390001 Acer palmatum dissectum 'Seiryu' #1 11390200J Acer palmatum dissectum 'Spring Delight' 6" RGP 10560000J Acer shirasawanum 'Aureum' 6" RGP 11437800J Acer shirasawanum 'Autumn Moon' 6" RGP 11438000J Acer shirasawanum 'Jordan' 6" RGP 11427301 Acer x pseudosieboldianum First Flame®('IslFirFl') #1 31562001 Berberis thunbergii 'Bagatelle' #1 31565701 Berberis thunbergii 'Golden Devine' #1 11631001 Betula jacquemontii 'Tickle Creek' #1 31671700J Buxus sempervirens 'Mont Bruno' 6" RGP 31673700J Buxus sempervirens 'Variegata' 6" RGP 31668300J Buxus sinica var. insularis 'Justin Brouwers' 6" RGP 32700001 Callicarpa bodinieri 'Profusion' #1 193501 Cedrus deodara 'Prostrate Beauty' #1 199001 Cedrus deodara 'Snow Sprite' #1 230901 Chamaecyparis obtusa 'Bridget' #1 231100J Chamaecyparis -
(12) Patent Application Publication (10) Pub. No.: US 2014/0161919 A1 Thangavel Et Al
US 2014O161919A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0161919 A1 Thangavel et al. (43) Pub. Date: Jun. 12, 2014 (54) PLANT PARTS AND EXTRACTS HAVING Publication Classification ANTICOCCDAL ACTIVITY (51) Int. C. (71) Applicant: Kemin Industries, Inc., Des Moines, IA A61E36/49 (2006.01) (US) A61E36/85 (2006.01) A61E36/22 (2006.01) (72) Inventors: Gokila Thangavel, Hosur (IN); (52) U.S. C. Rajalekshmi Mukkalil, Cochin (IN); CPC ................. A61K 36/49 (2013.01); A61K 36/22 Haridasan Chirakkal, Nolambur (IN); (2013.01); A61K 36/185 (2013.01) Hannah Kurian, Benson Town (IN) USPC ........................................... 424/769; 424/725 (21) Appl. No.: 13/928,504 (57) ABSTRACT (22) Filed: Jun. 27, 2013 Natural plant parts and extracts of plants selected from the Related U.S. Application Data group consisting of Quercus infectoria, Rhus chinensis and (60) Provisional application No. 61/664,795, filed on Jun. Terminalia chebula containing compounds such as gallic 27, 2012. acid, derivative of gallic acid, gallotannins and hydrolysable tannins have been found to control coccidiosis in poultry and, (30) Foreign Application Priority Data more specifically, coccidiosis caused by Eimeria spp. The plant parts and natural extracts result in a reduction of lesion Jan. 23, 2013 (IN) ............................. 177/DELA2013 score, oocysts per gram of fecal matter and mortality. Patent Application Publication Jun. 12, 2014 Sheet 1 of 14 US 2014/O161919 A1 Positive control S Negative control Positive Control Quercus infectoria Patent Application Publication Jun. 12, 2014 Sheet 2 of 14 US 2014/O161919 A1 as a 3. Q3 is niecifia FIG. 3 3 9. -
Efficacy and Safety of Prunus Mume and Choline in Patients with Abnormal Level of Liver Function Test
International Journal of Clinical Trials Aslam MN et al. Int J Clin Trials. 2020 Aug;7(3):170-175 http://www.ijclinicaltrials.com pISSN 2349-3240 | eISSN 2349-3259 DOI: http://dx.doi.org/10.18203/2349-3259.ijct20203103 Original Research Article Efficacy and safety of Prunus mume and choline in patients with abnormal level of liver function test Muhammad N. Aslam1, Anwar Ali2, Suresh Kumar3* 1Department of Gastroenterology, Mayo Hospital, Lahore, Pakistan 2Department of Medicine, Saidu Group of Teaching Hospital, Khyber Pakhtunkhwa, Pakistan 3Department of Medicine, Rafa-e-Aam Hospital, Sindh, Pakistan Received: 18 March 2020 Revised: 27 April 2020 Accepted: 30 April 2020 *Correspondence: Dr. Suresh Kumar, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: The objectives of the study were to determine the efficacy and safety of Prunus mume and choline in patients with abnormal liver function test. Methods: This open labelled, multi-centered observational study was done for a from May 2019 to December 2019. Patients of either gender, above 18 years of age having elevated levels of aspartate aminotransferase, alanine transaminase or gamma-glutamyltransferase were included in the study after taking informed consent. One to two tablets of revolic per day were given preferably in the morning with breakfast or as per instructions of the physician. Patient follow-ups were done at 2nd and 4th week after treatment. -
Non-Native Trees and Large Shrubs for the Washington, D.C. Area
Green Spring Gardens 4603 Green Spring Rd ● Alexandria ● VA 22312 Phone: 703-642-5173 ● TTY: 703-803-3354 www.fairfaxcounty.gov/parks/greenspring NON - NATIVE TREES AND LARGE SHRUBS FOR THE WASHINGTON, D.C. AREA Non-native trees are some of the most beloved plants in the landscape due to their beauty. In addition, these trees are grown for the shade, screening, structure, and landscape benefits they provide. Deciduous trees, whose leaves die and fall off in the autumn, are valuable additions to landscapes because of their changing interest throughout the year. Evergreen trees are valued for their year-round beauty and shelter for wildlife. Evergreens are often grouped into two categories, broadleaf evergreens and conifers. Broadleaf evergreens have broad, flat leaves. They also may have showy flowers, such as Camellia oleifera (a large shrub), or colorful fruits, such as Nellie R. Stevens holly. Coniferous evergreens either have needle-like foliage, such as the lacebark pine, or scale-like foliage, such as the green giant arborvitae. Conifers do not have true flowers or fruits but bear cones. Though most conifers are evergreen, exceptions exist. Dawn redwood, for example, loses its needles each fall. The following are useful definitions: Cultivar (cv.) - a cultivated variety designated by single quotes, such as ‘Autumn Gold’. A variety (var.) or subspecies (subsp.), in contrast, is found in nature and is a subdivision of a species (a variety of Cedar of Lebanon is listed). Full Shade - the amount of light under a dense deciduous tree canopy or beneath evergreens. Full Sun - at least 6 hours of sun daily. -
Osmanthus Fragrans
Osmanthus fragrans (Sweet Osmanthus, fragrant Tea olive) Sweet Tea Olive is large evergreen shrub or small tree is capable of reaching 6-8 m in height and width but is most often seen at 3-4 m high with a 2 m spread. The shiny, medium-green leaves have paler undersides and are joined from October through March by a multitude of small, but extremely fragrant, white blossoms. They perfume a large area of the landscape and can be showy in some years. The plant has a upright oval to columnar growth habit in youth. Sweet Osmanthus is ideal for use as an unclipped hedge or trained as a small tree, and should be placed where its fragrance can be enjoyed. Since the flowers are not particularly showy, people will wonder where the delightful fragrance is coming from. Sweet Osmanthus should be grown in full sun or partial shade in well-drained soil. Plants are fairly drought-tolerant once established but will perform their best with ample moisture. Needs acidic soil to grow in. Landscape Information French Name: Osmanthe fragrante, Osmanthe parfumée Pronounciation: oz-MANTH-us FRAY-granz Plant Type: Shrub Origin: Japan, China Heat Zones: 8, 9, 10, 11, 12 Hardiness Zones: 7, 8, 9, 10, 11 Uses: Screen, Hedge, Container Size/Shape Growth Rate: Slow Tree Shape: Round Canopy Symmetry: Symmetrical Canopy Density: Medium Canopy Texture: Medium Height at Maturity: 3 to 5 m Spread at Maturity: 3 to 5 meters Plant Image Osmanthus fragrans (Sweet Osmanthus, fragrant Tea olive) Botanical Description Foliage Leaf Arrangement: Opposite Leaf Venation: Pinnate Leaf -
Variety Identification and Landscape Application of Osmanthus Fragrans
l of Hortic na ul r tu u r Mu et al., J Hortic 2019, 6:1 o e J Journal of Horticulture DOI: 10.4172/2376-0354.1000251 ISSN: 2376-0354 ResearchRapid Communication Article OpenOpen Access Access Variety Identification and Landscape Application of Osmanthus fragrans in Jingzhou City Hongna Mu, Fei Zhao, Dongling Li and Taoze Sun* College of Horticulture and Gardening, Yangtze University, No. 88 Jingmi Road, Jingzhou, Hubei 434025, China Abstract Osmanthus fragrans had been considered one of the most popular trees in China for its economic value and cultural significance. O. fragrans, the most ubiquitous garden plants, which varieties had been unclear in Jingzhou city. It is an urgent task to figure out the precise varieties. Therefore, the investigation was carried out. Finally, 24 varieties were identifiedand landscape application had been illustrated in this paper. Keywords: Osmanthus fragrans; Variety identification; Landscape Material and Method application Materials Introduction This study was carried out in Three Kingdoms Park, Mingyue Park, Osmanthus fragrans, commonly known as sweet osmanthus, is Binjiang Park, Zhongshan Park, four typical public parks considering a woody, evergreen species of shrubs and small trees in the Oleaceae the park size, popularity, Vegetation coverage and the numbers of family. Sweet osmanthus has considerable economic value and cultural sweet osmanthus tree. Its distribution was illustrated in Figure 1a-d. significance and is one of the top ten traditional flowers in China. Method of variety survey Twenty-four of the thirty-five species in the Osmanthus genus are distributed in China, with the mostly highly representative species being Prepare variety investigation record card according to the O. -
Weathering Behaviour of Cunninghamia Lanceolata (Lamb.) Hook
Article Weathering Behaviour of Cunninghamia lanceolata (Lamb.) Hook. under Natural Conditions Xinjie Cui 1 and Junji Matsumura 2,* 1 Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; [email protected] 2 Laboratory of Wood Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan * Correspondence: [email protected]; Tel.: +81-092-802-4656 Received: 18 July 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: Information on the weathering behaviour of Cunninghamia lanceolata (Lamb.) Hook. is needed to provide references for wood weatherproof pre-treatment and to improve wood utilization. Therefore, this study was conducted to understand the variation in the intrinsic weathering behaviour of Cunninghamia lanceolata (Chinese fir) under natural conditions. Wood samples from 15 Cunninghamia lanceolata trees aged 26–30 years old were used. The structural degradation and discoloration of wood surfaces before and after exposure were compared. The results show that the weathering behaviour of wood was weakened from heartwood to sapwood and enhanced from the bottom to the top. This study provided information for weatherability research and improved wood utilization of Cunninghamia lanceolata. Keywords: Cunninghamia lanceolata; weathering; density; colour change; wood structure 1. Introduction Cunninghamia lanceolata (Lamb.) Hook. is a member of the family Cupressaceae. It is an evergreen tree that can grow up to 50 m in height and over 3 m in diameter. It forms mixed broad-leaved forests or small, pure stands, rocky hillsides, roadsides, with altitudes ranging from 200 to 2800 m [1]. -
Serenity Pervades a Chinese Garden of the Ming Dynasty, for This Is a Place of Retreat from the Doings of Humankind
Serenity pervades a Chinese garden of the Ming dynasty, for this is a place of retreat from the doings of humankind. It is where the functionary of the kingdom could indulge his "longing for mountains and water" without turning his back on his unrelenting obligations to state and family. Yet serenity is only the first of infinite layers that reveal themselves. The object of the garden is to capture all the elements of the natural landscape--mountains, rivers, lakes, trees, valleys, hills--and, by bringing them together in a small space, to concentrate the life force, the qi, that animates them. It is a harmony of contrasts, of dark and light, solid and empty, hard and soft, straight and undulating, yin and yang. This place was created to be savoured ever a lifetime. New meanings would be found in the symbolic objects and plants, new pictures seen as shadows placed across the rocks. The garden unfolded itself slowly. In this site, the Garden comes to life. The Dr. Sun Yat-Sen Classical Chinese Garden in Vancouver, British Columbia is the only full-sized classical Chinese garden outside China and though it was built in the 1980s, it employed the ancient techniques of the originals. For the architect, the botanist, the student of history, the lover of beauty, this site provides insights into the subtle wonders to be found within the walls of this living treasure. A Walk Through the Garden The Garden's Layers of Meaning Originally designed by Taoist poets, classical gardens were meant to create an atmosphere of tranquility for contemplation and inspiration. -
Cunninghamia Lanceolata (China-Fir) China-Fir Is Best Used As a Specimen, at the Corner of a Large Building, Or As a Large-Scale Screen Planted 15 to 20 Feet Apart
Cunninghamia lanceolata (China-Fir) China-Fir is best used as a specimen, at the corner of a large building, or as a large-scale screen planted 15 to 20 feet apart. It works well in oriental gardens and the foliage keeps well indoors in a vase of water. Not a tree you would use everywhere. It is too big for a residential landscape but useful on campuses and other large-scale landscapes. China- Fir should be grown in full sun or partial shade on moist, well-drained, acid soil. China-Fir is extremely drought tolerant and grows well in poor, compacted clay soil. It is very adapted to urban soils except those poorly drained. Landscape Information Pronounciation: kunn-ning-HAM-ee-uh lan- see-oh-LAY-tuh Plant Type: Tree Origin: China Heat Zones: 6, 7, 8, 9 Hardiness Zones: 6, 7, 8, 9 Uses: Screen, Hedge, Specimen, Pollution Tolerant / Urban Size/Shape Growth Rate: Moderate Tree Shape: Pyramidal, Columnar, Upright Canopy Symmetry: Symmetrical Canopy Density: Open Canopy Texture: Coarse Height at Maturity: 3 to 5 m, 5 to 8 m Spread at Maturity: Over 15 meters Time to Ultimate Height: 20 to 50 Years Plant Image Cunninghamia lanceolata (China-Fir) Botanical Description Foliage Leaf Arrangement: Spiral Leaf Venation: Parallel Leaf Persistance: Evergreen Leaf Type: Simple Leaf Blade: Less than 5 Leaf Shape: Lanceolate Leaf Margins: Ciliate Leaf Scent: No Fragance Color(growing season): Green Color(changing season): Green Flower Flower Showiness: False Flower Scent: No Fragance Trunk Trunk Has Crownshaft: False Trunk Susceptibility to Breakage: Generally -
Prunus Mume Japanese Apricot1 Edward F
Fact Sheet ST-512 October 1994 Prunus mume Japanese Apricot1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Japanese Flowering Apricot may be the longest- lived of the flowering fruit trees eventually forming a gnarled, picturesque, 20-foot-tall tree (Fig. 1). Appearing during the winter on bare branches are the multitude of small, fragrant, pink flowers which add to the uniqueness of the tree’s character. The small yellow fruits which follow the blooms are inedible but attractive. GENERAL INFORMATION Scientific name: Prunus mume Pronunciation: PROO-nus MEW-may Common name(s): Japanese Apricot Family: Rosaceae USDA hardiness zones: 6 through 8 (Fig. 2) Origin: not native to North America Uses: recommended for buffer strips around parking lots or for median strip plantings in the highway; near a deck or patio; specimen; no proven urban tolerance Availability: somewhat available, may have to go out of the region to find the tree DESCRIPTION Figure 1. Young Japanese Apricot. Height: 12 to 20 feet Spread: 15 to 20 feet Foliage Crown uniformity: irregular outline or silhouette Crown shape: round; vase shape Leaf arrangement: alternate (Fig. 3) Crown density: moderate Leaf type: simple Growth rate: medium Leaf margin: serrate Texture: fine Leaf shape: ovate 1. This document is adapted from Fact Sheet ST-512, a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October 1994. 2. Edward F. Gilman, associate professor, Environmental Horticulture Department; Dennis G. Watson, associate professor, Agricultural Engineering Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL 32611.