A Framework of Improving the Design of Tourism Demand Forecasting

Total Page:16

File Type:pdf, Size:1020Kb

A Framework of Improving the Design of Tourism Demand Forecasting Copyright Undertaking This thesis is protected by copyright, with all rights reserved. By reading and using the thesis, the reader understands and agrees to the following terms: 1. The reader will abide by the rules and legal ordinances governing copyright regarding the use of the thesis. 2. The reader will use the thesis for the purpose of research or private study only and not for distribution or further reproduction or any other purpose. 3. The reader agrees to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage. IMPORTANT If you have reasons to believe that any materials in this thesis are deemed not suitable to be distributed in this form, or a copyright owner having difficulty with the material being included in our database, please contact [email protected] providing details. The Library will look into your claim and consider taking remedial action upon receipt of the written requests. Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong http://www.lib.polyu.edu.hk The Hong Kong Polytechnic University School of Hotel and Tourism Management Improving the Design of Tourism Demand Forecasting Support System Zixuan Gao A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy 04/2015 CERTIFICATE OF ORIGINALITY I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it reproduces no material previously published or written, nor material that has been accepted for the award of any other degree or diploma, except where due acknowledgement has been made in the text. ___________________________ (Signed) Zixuan Gao (Name of student) I ABSTRACT Accurate tourism demand forecast is the foundation of all tourism-related businesses. As a particular type of decision support system, forecasting support systems (FSS) have been widely applied in tourism demand forecasting in recent years. One of the typical characteristics of existing tourism demand forecasting support systems (TDFSS) is the combination of statistical and judgmental forecasting techniques. A review of recent studies in this area shows that most studies on the development of TDFSS focus on the improvement of statistical forecasting methods. The effectiveness of human participation in the forecasting process is largely neglected, especially the influence of forecasters’ cognitive bias on forecast accuracy during the judgmental forecasting process when using TDFSS. Focusing on three typical cognitive biases (desire bias, anchoring bias, and overconfidence bias) in the literature of judgmental forecasting, this study represents the first attempt to identify the influence of these three cognitive biases on the judgmental forecasting of tourism demand and how they affect forecast accuracy. The second purpose of this study is to propose a systematic debiasing model that is able to effectively reduce the forecast error associated with the identified cognitive biases and can be easily implemented in the design of TDFSS. The proposed debiasing model comprises two parts: cognitive bias detection and debiasing. In the first part, potential cognitive biases involved in forecasters’ judgmental forecasts can be detected with a series of post-hoc tests. Based on the typical design features of FSS, both informative guidance and suggestive guidance are used as the debiasing strategies in the second part of the model. To test its effectiveness and related hypotheses, the proposed debiasing model has been implemented in the design of the Hong Kong tourism demand forecasting support system (HKTDFS). A two-stage laboratory experiment using HKTDFS and the empirical data of international tourist arrivals to Hong Kong from 10 destination-origin (D-O) pair markets was conducted. The experiment proceeded in three sessions and 75 qualified forecasters agreed to participate. Ultimately, 68 participants provided qualified data for further analysis. II The results show that 14 of 21 hypotheses are supported, one is partially supported, and the remaining six are rejected. Generally, the three cognitive biases examined are common in judgmental forecasting of tourism demand and contribute significantly to forecast error. Both performance feedback (PF) and system-suggested forecasts are effective in eliminating the influence of cognitive bias on forecast accuracy. In the design of TDFSS, these two debiasing strategies should be used in dealing with different cognitive biases. To be specific, PF should be provided to forecasters when desired outcome-related cognitive biases are detected; system-suggested forecasts should be recommended to replace forecasters’ judgmental forecasts when forecasters anchor their judgmental forecast on the statistical forecast or the latest observation of the forecasting series. In extreme cases, when system-suggested forecasts are not available, keeping statistical forecasts unchanged is the backup strategy when forecasters anchor their judgmental forecasts on statistical forecast; Naïve I forecast is the backup strategy when forecasters anchor on the latest observation of the forecasting series. These results provide evidence to further revise the debiasing model in order to improve the design of TDFSS. Keywords: forecasting support system, tourism demand, judgmental forecasting, cognitive bias, desire bias, anchoring bias, overconfidence, debiasing, decision guidance III ACKNOWLEDGEMENTS I would like to express my warmest and sincere gratitude to my chief supervisor Prof. Haiyan Song for his continuous support of my study. His invaluable guidance always be a lantern in the dark when I facing difficulties in my research and thesis writing. The completion of this thesis would even been impossible without his persistent help and encouragement throughout the whole life periods of my Ph.D. study. My sincere thanks also go to the faculty members and my colleagues in the school of Hotel and Tourism Management (SHTM) for their insightful comments and suggestions on my study. Special thanks to Prof. Rob Law for his guidance and kind suggestions at the starting stage of my research; thanks to Dr. Alan Wang and Dr. Kam Hung for their great support in the phase of data collection. Thanks to my fellow research mates in SHTM: Dr. Yong Chen, Dr. Lily Sun, Dr. Rosanna Leung, Emmy, and Louisa, and Daniel for the helpful discussions and bright ideas related to my research. I would also like to express my gratitude to my BoE Chair Dr. Karin Weber and my external examiners Prof. Honggang Xu from Sun Yat-sen University (China) and Dr. Bing Pan from the College of Charleston (US). Their comments are valuable for me to further improve my thesis. My appreciations also goes to researchers from oversea universities and colleagues who provided patient guidance and direction on the improvement of my research design during the period of attachment programme in the United Kingdom. My special thanks to Prof. Gang Li from the University of Surrey, and Prof. Robert Filds, Dr. Sven F. Crone, Dr. Fotios Petropoulos, Dr. Nikolaos Kourentzes, and Dr Gokhan Yildirim from Lancaster University. IV Furthermore, thanks to my beloved friends' support during my Ph.D. life. Special thanks to Ms. Baijing Song, Mr. Louis Shih, and Dr. Eve Ren who have been giving their consistent support in many different ways. Lastly, I would like to express my deepest appreciation to my wife, my parents, and all relatives who shared their love and wholehearted support in my four-year research period. You are truly my spiritual pillars and this thesis is for all of you. V TABLE OF CONTENTS CERTIFICATE OF ORIGINALITY .................................................................................. I ABSTRACT ...................................................................................................................... II ACKNOWLEDGEMENTS ............................................................................................. IV TABLE OF CONTENTS ................................................................................................. VI LIST OF TABLES ........................................................................................................... IX LIST OF FIGURES ......................................................................................................... XI ABBREVIATION .......................................................................................................... XII 1 INTRODUCTION ...................................................................................................... 1 1.1 Background of the study ...................................................................................... 1 1.2 Features of typical FSS ........................................................................................ 4 1.3 Problem statement ............................................................................................. 14 1.3.1 Ideal vs actual use of FSS .......................................................................... 15 1.3.2 Debiasing ................................................................................................... 18 1.4 Research objectives ........................................................................................... 21 1.5 Significance of the study ................................................................................... 26 1.5.1 Theoretical contribution ............................................................................
Recommended publications
  • Cognitive Biases in Software Engineering: a Systematic Mapping Study
    Cognitive Biases in Software Engineering: A Systematic Mapping Study Rahul Mohanani, Iflaah Salman, Burak Turhan, Member, IEEE, Pilar Rodriguez and Paul Ralph Abstract—One source of software project challenges and failures is the systematic errors introduced by human cognitive biases. Although extensively explored in cognitive psychology, investigations concerning cognitive biases have only recently gained popularity in software engineering research. This paper therefore systematically maps, aggregates and synthesizes the literature on cognitive biases in software engineering to generate a comprehensive body of knowledge, understand state of the art research and provide guidelines for future research and practise. Focusing on bias antecedents, effects and mitigation techniques, we identified 65 articles (published between 1990 and 2016), which investigate 37 cognitive biases. Despite strong and increasing interest, the results reveal a scarcity of research on mitigation techniques and poor theoretical foundations in understanding and interpreting cognitive biases. Although bias-related research has generated many new insights in the software engineering community, specific bias mitigation techniques are still needed for software professionals to overcome the deleterious effects of cognitive biases on their work. Index Terms—Antecedents of cognitive bias. cognitive bias. debiasing, effects of cognitive bias. software engineering, systematic mapping. 1 INTRODUCTION OGNITIVE biases are systematic deviations from op- knowledge. No analogous review of SE research exists. The timal reasoning [1], [2]. In other words, they are re- purpose of this study is therefore as follows: curring errors in thinking, or patterns of bad judgment Purpose: to review, summarize and synthesize the current observable in different people and contexts. A well-known state of software engineering research involving cognitive example is confirmation bias—the tendency to pay more at- biases.
    [Show full text]
  • Behavioral Bias in Number Processing: Evidence from Analysts’ Expectations∗
    Behavioral bias in number processing: Evidence from analysts' expectations∗ Patrick Rogery Tristan Rogerz Alain Schattx November 10, 2017 Abstract Research in neuropsychology shows that individuals process small and large num- bers differently. Small numbers are processed on a linear scale, while large numbers are processed on a logarithmic scale. In this paper, we show that financial analysts pro- cess small prices and large prices differently. When they are optimistic (pessimistic), analysts issue more optimistic (pessimistic) target prices for small price stocks than for large price stocks. Our results are robust when controlling for the usual risk factors such as size, book-to-market, momentum, profitability and investments. They are also robust when we control for firm and analyst characteristics, or for other biases such as the 52-week high bias, the preference for lottery-type stocks and positive skewness, and the analyst tendency to round numbers. Finally, we show that analysts become more optimistic after stock splits. Overall, our results suggest that a deeply-rooted behavioral bias in number processing drives analysts' return expectations. Keywords: Financial analysts, target prices, behavioral bias, number perception, stock price magnitude ∗This paper benefited from comments by Anthony Bellofatto, Eric de Bodt, Fran¸coisDerrien, Michel Dubois, Nicolas Eber, Jean-Fran¸coisGajewski, Amit Goyal, Patrick Hauf, Maria Chiara Iannino, Jens Jackwerth, Markku Kaustia, Catharina Klepsch, Maxime Merli, Pamela Moulton, Raghavendra Rau, H´el`ene
    [Show full text]
  • Analytical Debiasing of Corporate Cash Flow Forecasts
    European Journal of Operational Research 243 (2015) 1004–1015 Contents lists available at ScienceDirect European Journal of Operational Research journal homepage: www.elsevier.com/locate/ejor Interfaces with Other Disciplines Analytical debiasing of corporate cash flow forecasts Sebastian M. Blanc∗, Thomas Setzer Karlsruhe Institute of Technology, Englerstraße 14, 76131 Karlsruhe, Germany article info abstract Article history: We propose and empirically test statistical approaches to debiasing judgmental corporate cash flow forecasts. Received 23 April 2014 Accuracy of cash flow forecasts plays a pivotal role in corporate planning as liquidity and foreign exchange risk Accepted 19 December 2014 management are based on such forecasts. Surprisingly, to our knowledge there is no previous empirical work Availableonline27December2014 on the identification, statistical correction, and interpretation of prediction biases in large enterprise financial Keywords: forecast data in general, and cash flow forecasting in particular. Employing a unique set of empirical forecasts Analytics delivered by 34 legal entities of a multinational corporation over a multi-year period, we compare different Judgmental forecasting forecast correction techniques such as Theil’s method and approaches employing robust regression, both with Forecast bias correction various discount factors. Our findings indicate that rectifiable mean as well as regression biases exist for all Cash flow forecasting business divisions of the company and that statistical correction increases forecast accuracy significantly. We show that the parameters estimated by the models for different business divisions can also be related to the characteristics of the business environment and provide valuable insights for corporate financial controllers to better understand, quantify, and feedback the biases to the forecasters aiming to systematically improve predictive accuracy over time.
    [Show full text]
  • Thinking and Reasoning
    Thinking and Reasoning Thinking and Reasoning ■ An introduction to the psychology of reason, judgment and decision making Ken Manktelow First published 2012 British Library Cataloguing in Publication by Psychology Press Data 27 Church Road, Hove, East Sussex BN3 2FA A catalogue record for this book is available from the British Library Simultaneously published in the USA and Canada Library of Congress Cataloging in Publication by Psychology Press Data 711 Third Avenue, New York, NY 10017 Manktelow, K. I., 1952– Thinking and reasoning : an introduction [www.psypress.com] to the psychology of reason, Psychology Press is an imprint of the Taylor & judgment and decision making / Ken Francis Group, an informa business Manktelow. p. cm. © 2012 Psychology Press Includes bibliographical references and Typeset in Century Old Style and Futura by index. Refi neCatch Ltd, Bungay, Suffolk 1. Reasoning (Psychology) Cover design by Andrew Ward 2. Thought and thinking. 3. Cognition. 4. Decision making. All rights reserved. No part of this book may I. Title. be reprinted or reproduced or utilised in any BF442.M354 2012 form or by any electronic, mechanical, or 153.4'2--dc23 other means, now known or hereafter invented, including photocopying and 2011031284 recording, or in any information storage or retrieval system, without permission in writing ISBN: 978-1-84169-740-6 (hbk) from the publishers. ISBN: 978-1-84169-741-3 (pbk) Trademark notice : Product or corporate ISBN: 978-0-203-11546-6 (ebk) names may be trademarks or registered trademarks, and are used
    [Show full text]
  • Masterarbeit / Master's Thesis
    MASTERARBEIT / MASTER’S THESIS Titel der Masterarbeit / Title of the Master‘s Thesis „The Role of Cognitive Decision-Making Biases in Management Accounting Research“ verfasst von / submitted by Lukas Zwölfjahr, Bakk.rer.soc.oec. angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc) Wien, 2017 / Vienna 2017 Studienkennzahl lt. Studienblatt / A 066 915 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Masterstudium Betriebswirtschaft UG2002 degree programme as it appears on the student record sheet: Betreut von / Supervisor: Mag. Dr. Martin Altenburger Table of Content Table of Figures ................................................................................................................. IV 1 Introduction ................................................................................................................. 1 2 Theoretical Background .............................................................................................. 4 2.1 Prospect Theory .................................................................................................. 5 2.2 Cognitive Dissonance Theory .............................................................................10 2.3 Explanation of Further Cognitive Biases .............................................................11 3 Research Procedure ..................................................................................................14 4 Literature Review .......................................................................................................15
    [Show full text]
  • Media Bias and Reputation Matthew Gentzkow Jesse M. Shapiro
    Media Bias and Reputation Matthew Gentzkow University of Chicago Jesse M. Shapiro University of Chicago and National Bureau of Economic Research A Bayesian consumer who is uncertain about the quality of an infor- mation source will infer that the source is of higher quality when its reports conform to the consumer’s prior expectations. We use this fact to build a model of media bias in which firms slant their reports toward the prior beliefs of their customers in order to build a repu- tation for quality. Bias emerges in our model even though it can make all market participants worse off. The model predicts that bias will be less severe when consumers receive independent evidence on the true state of the world and that competition between independently owned news outlets can reduce bias. We present a variety of empirical evi- dence consistent with these predictions. We are extremely grateful to an anonymous referee for thorough and insightful com- ments on an earlier draft of this paper. We also thank Alberto Alesina, Attila Ambrus, Nigel Ashford, Chris Avery, Heski Bar-Isaac, Gary Becker, Tyler Cowen, Jonathan Feinstein, Jeremy Fox, Drew Fudenberg, Ed Glaeser, Jerry Green, James Heckman, Tom Hubbard, Steve Levitt, Larry Katz, Kevin M. Murphy, Roger Myerson, Canice Prendergast, Matthew Rabin, Andrei Shleifer, Lars Stole, Richard Thaler, Richard Zeckhauser, and seminar par- ticipants at Harvard University, the University of Chicago, the Institute for Humane Studies, and the University of British Columbia for helpful comments. We thank Christopher Avery, Judith Chevalier, Matthew Hale, Martin Kaplan, Bryan Boulier, and H. O.
    [Show full text]
  • Cranfield University
    CRANFIELD UNIVERSITY THABANG MOKOALELI-MOKOTELI ARE ANALYSTS BIASED? AN ANALYSIS OF ANALYSTS’ STOCK RECOMMENDATIONS FOR STOCKS THAT PERFORM CONTRARY TO EXPECTATIONS SCHOOL OF MANAGEMENT PhD THESIS CRANFIELD UNIVERSITY School of Management Accounting and Finance Group PhD Thesis Academic year 2004/05 THABANG MOKOALELI-MOKOTELI ARE ANALYSTS BIASED? AN ANALYSIS OF ANALYSTS’ STOCK RECOMMENDATIONS FOR STOCKS THAT PERFORM CONTRARY TO EXPECTATIONS SUPERVISOR: PROFESSOR RICHARD TAFFLER SEPTEMBER 2005 © Cranfield University, 2005. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Are analysts biased? An analysis of analysts’ stock recommendations for stocks that perform contrary to expectations Abstract The finance literature suggests that analysts’ stock recommendations have negligible impact on market prices. Some studies suggest this lack of market impact may be partly driven by the affiliations between investment banks and the firms their brokerage arms cover (conflicts of interest). However, most of these studies fail to take into account other factors including institutional and trading issues and psychological biases which may well be just as important in influencing analysts when they gather, process and interpret information about stocks. The aim of the current study is to establish the factors which are associated with analysts issuing stock recommendations that lack market impact. I find that nonconforming analysts’ stock recommendations are associated with overconfidence bias (as measured by optimism in the language they use) and representativeness bias (as measured by previous stock price performance, market capitalisation, book-to-market and change in target price).
    [Show full text]
  • Are Security Analysts Rational? - a Literature Review 1
    E S T UDOS II Cidadania, Instituições e Património Economia e Desenvolvimento Regional Finanças e Contabilidade Gestão e Apoio à Decisão Modelos Aplicados à Economia e à Gestão F E F E Faculdade de Economia da Universidade do Algarve 2005 COMISSÃO EDITORIAL António Covas Carlos Cândido Duarte Trigueiros Efigénio da Luz Rebelo João Albino da Silva João Guerreiro Paulo M.M. Rodrigues Rui Nunes _______________________________________________________________________ FICHA TÉCNICA Faculdade de Economia da Universidade do Algarve Campus de Gambelas, 8005-139 Faro Tel. 289817571 Fax. 289815937 E-mail: [email protected] Website: www.ualg.pt/feua Título Estudos II - Faculdade de Economia da Universidade do Algarve Autor Vários Editor Faculdade de Economia da Universidade do Algarve Morada: Campus de Gambelas Localidade: FARO Código Postal: 8005-139 Capa e Design Gráfico Susy A. Rodrigues Compilação, Revisão de Formatação e Paginação Lídia Rodrigues Fotolitos e Impressão Grafica Comercial – Loulé ISBN 972-99397-1-3 Data: 26-08-2005 Depósito Legal 218279/04 Tiragem 250 exemplares Data Novembro 2005 RESERVADOS TODOS OS DIREITOS REPRODUÇÃO PROIBIDA ii Are security analysts rational? - A literature review 1 Rúben M. T. Peixinho Faculdade de Economia, Universidade do Algarve Luís M. S. Coelho Faculdade de Economia, Universidade do Algarve Richard J. Taffler Cranfield School of Managment Abstract Rational choice theory and bounded rationality constitute the basis for the discussion in several areas regarding human rationality. In finance, this discussion has been made between traditional finance and behavioural finance approach, which have different perspectives concerning market agents’ rationality. This paper reviews several studies addressing rationality among security analysts. The analysis shows that analysts’ systematic optimism seems to be inconsistent with rationality.
    [Show full text]
  • Biased Forecasts Or Biased Earnings? the Role of Reported Earnings in Explaining Apparent Bias and Over/Underreaction in Analysts’ Earnings Forecasts$
    ARTICLE IN PRESS Journal of Accounting and Economics 36 (2003) 105–146 Biased forecasts or biased earnings? The role of reported earnings in explaining apparent bias and over/underreaction in analysts’ earnings forecasts$ Jeffery Abarbanella, Reuven Lehavyb,* a Kenan-Flagler Business School, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3490, USA b University of Michigan Business School, 701 Tappan Street, Ann Arbor, MI 48109-1234, USA Received 21 February 2002; received in revised form 23 October 2003; accepted 11 November 2003 Abstract The extensive literature that investigates whether analysts’ earnings forecasts are biased and/or inefficient has produced conflicting evidence and no definitive answers to either question. This paper shows how two relatively small but statistically influential asymmetries in the tail and the middle of distributions of analysts’ forecast errors can exaggerate or obscure evidence consistent with analyst bias and inefficiency, leading to inconsistent inferences. We identify an empirical link between firms’ recognition of unexpected accruals and the presence of the two asymmetries in distributions of forecast errors that suggests that firm reporting choices play an important role in determining analysts’ forecast errors. r 2003 Elsevier B.V. All rights reserved. JEL classification: G10; G14; M41 Keywords: Analysts’ forecasts; Earnings management; Bias; Inefficiency $We would like to thank workshop participants at Emory University, the University of North Carolina, Hebrew University, the University
    [Show full text]
  • Quantifying Cognitive Biases in Analyst Earnings Forecasts
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Finance Department Faculty Publications Finance Department 9-2005 Quantifying Cognitive Biases in Analyst Earnings Forecasts Geoffrey C. Friesen University of Nebraska-Lincoln, [email protected] Paul Weller University of Iowa, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/financefacpub Part of the Finance and Financial Management Commons Friesen, Geoffrey C. and Weller, Paul, "Quantifying Cognitive Biases in Analyst Earnings Forecasts" (2005). Finance Department Faculty Publications. 23. https://digitalcommons.unl.edu/financefacpub/23 This Article is brought to you for free and open access by the Finance Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Finance Department Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Quantifying Cognitive Biases in Analyst Earnings Forecasts Geoffrey Friesen* University of Nebraska-Lincoln [email protected] Paul A. Weller** University of Iowa [email protected] September 2005 * Department of Finance, University Of Nebraska-Lincoln, 237 CBA, Lincoln, NE 68588-0490. Tel: 402.472.2334. Fax: 402.472.5140 ** Department of Finance, Henry B. Tippie College of Business, University of Iowa, Iowa City, IA 52242- 1000. Tel: 319.335.1017. Fax: 319.335.3690. We would like to thank Gene Savin, Matt Billett, Anand Vijh, Ashish Tiwari, Gary Koppenhaver, Jim Schmidt and seminar participants at the University of Iowa, University of Nebraska-Lincoln, Iowa State University, Northern Illinois, SUNY at Albany and the 2003 FMA Annual Meeting for helpful comments. We are grateful to I/B/E/S International Inc. for providing the earnings forecast data under their Academic Research Program.
    [Show full text]
  • De-Biasing Bold Forecasts Using the 'Outside View': the Case of Analysts
    De-biasing bold forecasts using the ‘outside view’: The case of analysts’ sales growth forecasts Peter Joos* INSEAD December 17, 2018 Abstract: This paper examines how two complementary cognitive processes defined by Kahneman and Lovallo (1993) – the inside and outside view – relate to the generation and the properties of sell-side analyst forecasts. By studying the occurrence and properties of analysts’ sales growth forecasts that are bold from a statistical mean-reversion perspective, I conclude that: 1) bold forecasts are associated with characteristics that highlight forecast setting specificity, consistent with analysts over-relying on setting-specific information (i.e., an inside view); and 2) relative to non-bold forecasts, bold forecasts exhibit stronger bias. Further, the degree of mean-reversion in the forecast setting appears associated with the frequency of bold forecasts and exacerbates their bias, consistent with analysts insufficiently de-biasing their forecasts using relevant ‘outside view’ information. This archival-empirical evidence complements experimental findings by Sedor (2002) on analysts’ unintentional cognitive bias and illustrates the role of the analysts’ cognitive process for their analysis (Bradshaw 2011). JEL Classifications: G24, G11, G02. Keywords: Financial analysts; Bold forecast; Cognitive process; Mean-reversion; Sales growth. Data availability: Data are available from the sources cited in the text. * INSEAD Asia Campus, 1 Ayer Rajah Avenue, Singapore 138676, Email: [email protected]. I would like to thank Dan Bens, Gavin Cassar, Todd Castagno, Kangkang Fu, Gilles Hilary, Philip Joos, Thomas Keusch, Taeho Ko, Edith Leung, Russell Lundholm, Lucie Tepla, Dan Walters, Holly Yang, and participants at the European Accounting Association Meeting in Maastricht (2016) for helpful comments and discussions.
    [Show full text]
  • Air Pollution, Affect, and Forecasting Bias
    Air Pollution, Affect, and Forecasting Bias: Evidence from Chinese Financial Analysts∗ Rui Dong, Raymond Fisman, Yongxiang Wang, and Nianhang Xu† Abstract We document a negative relation between air pollution during corporate site visits by investment analysts and subsequent earnings forecasts. After accounting for analyst, weather , and firm characteristics, an extreme worsening of air quality from “good/excellent” to “severely polluted” is associated with a more than 1 percentage point lower profit forecast, relative to realized profits. We explore heterogeneity in the pollution-forecast relation to understand better the underlying mechanism. Pollution only affects forecasts that are announced in the weeks immediately following a visit, indicating that mood likely plays a role, and the effect of pollution is less pronounced when analysts from different brokerages visit on the same date, suggesting a debiasing effect of multiple perspectives. Finally, there is suggestive evidence of adaptability to environmental circumstances – forecasts from analysts based in high pollution cities are relatively unaffected by site visit pollution. JEL classifications: D91; G41; Q5 Keywords: Pollution; Forecasting bias; Investment analysts; Adaptation ∗We thank G.William Schwert (the Editor), David Hirshleifer (the referee), Dongmin Kong, Honghai Yu, Yexiao Xu, and seminar participants at the 2018 China Financial Research Conference, the 2018 China International Conference in Finance, the 2018 China Young Finance Scholars Society conference, Liaoning University, Renmin University of China for helpful comments and discussion. Xu acknowledges the financial support from the National Natural Science Foundation of China (Grant Nos. 71622010, 71790601 and 71532012). we retain responsibility for any remaining errors. †Dong: Department of Finance, School of Business, Renmin University of China, Beijing, PR.
    [Show full text]