No Need for Metadata Here

Total Page:16

File Type:pdf, Size:1020Kb

No Need for Metadata Here DOI: 10.3310/hta17300 HEALTH TECHNOLOGY ASSESSMENT 2013 VOL. 17 NO. 30 Ovid MEDLINE(R) 1950 to September week 1 2010 1. exp Anticoagulants/ (159,888) 2. (anticoagulant$ or anticoagulation).mp. (69,316) 3. (anti coagulant$ or anti coagulation).mp. (1193) 4. (warfarin or acenocoumarol or coumadin or coumarin or phenprocoumon or sintrom or sinthrome or jantoven or marevan or waran or nicoumalone or dicoumarol or dicumarol).mp. (24,778) 5. (phenindione or dabigatran or ximelagatran or apixaban or rivaroxaban or edoxaban or azd0837 or ly517717 or ym150 or betrixaban or idraparinux).mp. (1606) 6. or/1-5 (182,359) 7. atrial fibrillation.mp. (33,393) 8. 6 and 7 (4989) Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations 27 September 2010 1. (anticoagulant$ or anticoagulation).mp. (1463) 2. (anti coagulant$ or anti coagulation).mp. (55) 3. (warfarin or acenocoumarol or coumadin or coumarin or phenprocoumon or sintrom or sinthrome or jantoven or marevan or waran or nicoumalone or dicoumarol or dicumarol).mp. (1003) 4. (phenindione or dabigatran or ximelagatran or apixaban or rivaroxaban or edoxaban or azd0837 or ly517717 or ym150 or betrixaban or idraparinux).mp. (91) 5. atrial fibrillation.mp. (1255) 6. or/1-4 (2289) 7. 5 and 6 (211) EMBASE (Ovid) 1980 to September 2010 1. (anticoagulant$ or anticoagulation).mp. 2. (anti coagulant$ or anti coagulation).mp. 3. (warfarin or acenocoumarol or coumadin or coumarin or phenprocoumon or sintrom or sinthrome or jantoven or marevan or waran or nicoumalone or dicoumarol or dicumarol).mp. 4. (phenindione or dabigatran or ximelagatran or apixaban or rivaroxaban or edoxaban or azd0837 or ly517717 or ym150 or betrixaban or idraparinux).mp. 5. exp anticoagulant agent/ 6. atrial fibrillation.mp. 7. 1 or 2 or 3 or 4 or 5 8. 6 and 7 The Cochrane Library (Cochrane Central Register of Controlled Trials) 2010 Issue 3 1. anticoagulation or anticoagulant* 2. (anti next coagulant*) or (anti next coagulation) 3. MeSH descriptor Anticoagulants explode all trees © Queen’s Printer and Controller of HMSO 2013. This work was produced by Lane et al. under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed 133 to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK. APPENDIX 2 4. warfarin or acenocoumarol or coumadin or coumarin or phenprocoumon or sintrom or sinthrome or jantoven or marevan or waran or nicoumalone or dicoumarol or dicumarol 5. phenindione or dabigatran or ximelagatran or apixaban or rivaroxaban or edoxaban or azd0837 or ly517717 or ym150 or betrixaban or idraparinux 6. (1 OR 2 OR 3 OR 4 OR 5) 7. atrial next fibrillation 8. MeSH descriptor Atrial Fibrillation explode all trees 9. (7 OR 8) 10. (6 AND 9) 134 NIHR Journals Library www.journalslibrary.nihr.ac.uk.
Recommended publications
  • Photoreactivity of Coumaryl Compounds Toward Dna
    PHOTOREACTIVITY OF COUMARYL COMPOUNDS TOWARD DNA PYRIMIDINE BASES by DYNA KERNS McINTURFF, B.S. A THESIS IN CHEMISTRY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Accepted December, 1975 Hf<D I : u: It ACKNOWLEDGMENTS I am indebted to Professor Pill-Soon Song for his direction of this thesis and to the other members of my committee. Professors John A. Anderson and Ira C. Felkner, for their helpful criticism. I am also appreciative of early encouragement by Dr. W. J. Kerns and technical assistance by Dr. W. W. Mantulin. ii CONTENTS ACKNOWLEDGMENTS ii LIST OF TABLES iv LIST OF ILLUSTRATIONS v I. INTRODUCTION 1 Purpose and Scope of the Thesis 1 Review of the Literature 2 II. MATERIALS AND METHODS 15 Materials 15 Methods 16 III. RESULTS AND DISCUSSION 18 Results 18 Discussion 24 IV. CONCLUSIONS 30 REFERENCES 31 APPENDIX 34 11 LIST OF TABLES Table Page 1. Relative rates of the photoreaction between photosensitizers and 2 to 4 x 10~^M pyrimidine bases 20 2. Relative rates of the photoreaction between photosensitizers and 2 to 4 x 10 M pyrimidine bases 21 3. Effect of oxygen quenching on the photoreactions between photosensitizers and 2 to 4 x 10~^M pyrimidine bases 22 4. Relative rates of the photoreactions of the 5-methoxypsoralen, 5-hydroxypsoralen and 8-hydroxypsoralen systems studied. All pyrimidine bases are 2 to 4 x 10" M 23 IV LIST OF ILLUSTRATIONS 1. Structural formulas of coumarin, 8-methoxypsoralen, and benzodipyrones 8 2.
    [Show full text]
  • Low Molecular Weight Heparin Versus Acenocoumarol in the Secondary Prophylaxis of Deep Vein Thrombosis
    Thromb Haemost 1999; 81: 26–31 © 1999 Schattauer Verlag, Stuttgart Low Molecular Weight Heparin versus Acenocoumarol in the Secondary Prophylaxis of Deep Vein Thrombosis S. Lopaciuk, H. Bielska-Falda1, W. Noszczyk1, M. Bielawiec 2, W. Witkiewicz 3, S. Filipecki 4, J. Michalak 5, L. Ciesielski 6, Z. Mackiewicz 7, E. Czestochowska 8, K. Zawilska 9, A. Cencora 10, among others* From the Institute of Hematology and Blood Transfusion, Warsaw, 1st 1Department of Surgery, Medical School, Warsaw, 2Department of Hematology, Medical School, Bialystok, 3Department of Vascular Surgery, District General Hospital, Wroclaw, 4Department of Internal Medicine, Institute of Tuberculosis and Lung Diseases, Warsaw, 5Department of Vascular Surgery, Medical School, Lublin, 1st 6Department of Surgery, Medical School, Lodz, 7Department of Vascular Surgery, Medical School, Bydgoszcz, 3rd 8Department of Internal Medicine, Medical School, Gdansk, 9Department of Hematology, Medical School, Poznan, and 10Department of Vascular Surgery, District General Hospital, Krakow, Poland Summary oral anticoagulant for at least 3 months (secondary prophylaxis). Al- though long-term anticoagulation with coumarin drugs, the most popu- The aim of this study was to determine the efficacy and safety of lar of which are warfarin and acenocoumarol, has been repeatedly dem- subcutaneous weight-adjusted dose low molecular weight heparin onstrated effective in the prevention of recurrent venous thromboembo- (LMWH) compared with oral anticoagulant (OA) in the prevention of lism, it suffers from a number of limitations. This treatment requires recurrent venous thromboembolism. In a prospective multicenter trial, strict laboratory control and consequent adjustments of the drug dosage 202 patients with symptomatic proximal deep vein thrombosis (DVT) and carries a substantial risk of bleeding complications (1).
    [Show full text]
  • Occurrence, Elimination, and Risk of Anticoagulant Rodenticides in Wastewater and Sludge
    Occurrence, elimination, and risk of anticoagulant rodenticides in wastewater and sludge Silvia Lacorte, Cristian Gómez- Canela Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona Rats and super-rats Neverending story 1967 Coumachlor 1 tn rodenticides /city per campaign “It will be the LAST ONE” Rodenticides Biocides: use regulated according to EU. Used mainly as bait formulations. First generation: multiple feedings, less persistent in tissues, commensal and outdoor use. Second generation: single feeding (more toxic), more persistent in tissue, commensal use only. Toxic: vitamin K antagonists that cause mortality by blocking an animal’s ability to produce several key blood clotting factors. High oral, dermal and inhalation toxicity. Origin and fate of rodenticides Study site: Catalonia (7.5 M inhabitants) 1693 km of sewage corridor 13 fluvial tanks (70.000 m3) 130,000,000 € / 8 YEARS 32,000 km2 378,742 kg/y AI 2,077,000 € Objectives 1. To develop an analytical method to determine most widely used rodenticides in wastewater and sludge. 2. To monitor the presence of rodenticides within 9 WWTP receiving urban and agricultural waters. 3. To evaluate the risk of rodenticides using Daphnia magna as aquatic toxicological model. 4. To study the accumulation of rodenticides in sludge. Compounds studied Coumachlor* Pindone C19H15ClO4 C14H14O3 Dicoumarol Warfarin C19H12O6 C19H16O4 Coumatetralyl Ferulenol FGARs C19H16O3 C24H30O3 Acenocoumarol Chlorophacinone • Solubility C19H15NO6 C23H15ClO3 0.001-128 mg/L • pKa 3.4-6.6 Flocoumafen Bromadiolone C H F O C H BrO 33 25 3 40 30 23 4 • Log P 1.92-8.5 Brodifacoum Fluindione C H BrO 31 23 3 C15H9FO2 SGARs Difenacoum Fenindione C31H24O3 C15H10O2 1.
    [Show full text]
  • Characterising the Risk of Major Bleeding in Patients With
    EU PE&PV Research Network under the Framework Service Contract (nr. EMA/2015/27/PH) Study Protocol Characterising the risk of major bleeding in patients with Non-Valvular Atrial Fibrillation: non-interventional study of patients taking Direct Oral Anticoagulants in the EU Version 3.0 1 June 2018 EU PAS Register No: 16014 EMA/2015/27/PH EUPAS16014 Version 3.0 1 June 2018 1 TABLE OF CONTENTS 1 Title ........................................................................................................................................... 5 2 Marketing authorization holder ................................................................................................. 5 3 Responsible parties ................................................................................................................... 5 4 Abstract ..................................................................................................................................... 6 5 Amendments and updates ......................................................................................................... 7 6 Milestones ................................................................................................................................. 8 7 Rationale and background ......................................................................................................... 9 8 Research question and objectives .............................................................................................. 9 9 Research methods ....................................................................................................................
    [Show full text]
  • STUDY PROTOCOL Study Information Title Apixaban Drug
    Apixaban B0661076NON-INTERVENTIONAL STUDY PROTOCOL Final, 15-Feb-2016 NON-INTERVENTIONAL (NI) STUDY PROTOCOL Study information Title Apixaban drug utilization study in Stroke prevention in atrial fibrillation (SPAF) Protocol number B0661076 AEMPS Code PFI-API-2016-01 Protocol version identifier 4.0 Date of last version of protocol 15-Feb-2016 Active substance Apixaban B01AF02 Medicinal product Eliquis® Research question and objectives Evaluate the apixaban utilization according to the approved SPAF indication and recommendations by EMA. The study objectives are: Objective 1: To characterise patients using apixaban according to demographics, comorbidity, risk of thromboembolic events (CHADS2 and CHA2DS2-Vasc scores), risk of bleeding events (HAS-BLED score), comedications and compare it with the profile of patients treated with VKA, dabigatran and rivaroxaban. Objective 2: Describe the level of appropriate usage according to the posology recommended in the apixaban SmPC. Objective 3: Describe the potential interactions with other drugs prescribed concomitantly according with the SmPC recommendations. Objective 4: Estimate the level of apixaban adherence by the medication possession ratio (MPR) and discontinuation rates and compare it with VKA, dabigatran and CT24-GSOP-RF03 NI Study Protocol Template; Version 3.0, Effective Date 10-Oct-2014 Pfizer Confidential Page 1 of 28 Apixaban B0661076NON-INTERVENTIONAL STUDY PROTOCOL Final, 15-Feb-2016 rivaroxaban cohort. Objective 5: To analyze INR (International Normalized Ratio) values during the last 12 months and to obtain TTR (Time in Therapeutic Range) values in patients previously treated with VKA and, during the whole study period for those in the cohort treated with VKA Author Ángeles Quijada Manuitt, IDIAP Jordi Gol Rosa Morros Pedrós, IDIAP Jordi Gol Jordi Cortés, IDIAP Jordi Gol José Chaves Puertas, Pfizer SLU Sponsor Pfizer S.L.U Avda.
    [Show full text]
  • Review of Anticoagulant Drugs in Paediatric Thromboembolic Disease
    18th Expert Committee on the Selection and Use of Essential Medicines (21 to 25 March 2011) Section 12: Cardiovascular medicines 12.5 Antithrombotic medicines Review of Anticoagulant Drugs in Paediatric Thromboembolic Disease September 2010 Prepared by: Fiona Newall Anticoagulation Nurse Manager/ Senior Research Fellow Royal Children’s Hospital/ The University of Melbourne Melbourne, Australia 1 Contents Intent of Review Review of indications for antithrombotic therapy in children Venous thromboembolism Arterial thrombeombolism Anticoagulant Drugs Unfractionated heparin Mechanism of action and pharmacology Dosing and administration Monitoring Adverse events Formulary Summary recommendations Vitamin K antagonists Mechanism of action and pharmacology Dosing and administration Monitoring Adverse events Formulary Summary recommendations Low Molecular Weight Heparins Mechanism of action and pharmacology Dosing and administration Monitoring Adverse events Formulary Summary recommendations ??Novel anticoagulants Summary 2 1. Intent of Review To review the indications for anticoagulant therapies in children. To review the epidemiology of thromboembolic events in children. To review the literature and collate the evidence regarding dosing, administration and monitoring of anticoagulant therapies in childhood. To review the safety of anticoagulant therapies and supervision required To give recommendations for the inclusion of anticoagulants on the WHO Essential Medicines List 2. Review of indications for antithrombotic therapy in children Anticoagulant therapies are given for the prevention or treatment of venous and/or arterial thrombosis. The process of ‘development haemostasis’, whereby the proteins involved in coagulation change quantitatively and qualitatively with age across childhood, essentially protects children against thrombosis(1-5). For this reason, insults such as immobilization are unlikely to trigger the development of thrombotic diseases in children.
    [Show full text]
  • Pharmacokinetics of Anticoagulant Rodenticides in Target and Non-Target Organisms Katherine Horak U.S
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Plant Publications Health Inspection Service 2018 Pharmacokinetics of Anticoagulant Rodenticides in Target and Non-target Organisms Katherine Horak U.S. Department of Agriculture, [email protected] Penny M. Fisher Landcare Research Brian M. Hopkins Landcare Research Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons Horak, Katherine; Fisher, Penny M.; and Hopkins, Brian M., "Pharmacokinetics of Anticoagulant Rodenticides in Target and Non- target Organisms" (2018). USDA National Wildlife Research Center - Staff Publications. 2091. https://digitalcommons.unl.edu/icwdm_usdanwrc/2091 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Chapter 4 Pharmacokinetics of Anticoagulant Rodenticides in Target and Non-target Organisms Katherine E. Horak, Penny M. Fisher, and Brian Hopkins 1 Introduction The concentration of a compound at the site of action is a determinant of its toxicity. This principle is affected by a variety of factors including the chemical properties of the compound (pKa, lipophilicity, molecular size), receptor binding affinity, route of exposure, and physiological properties of the organism. Many compounds have to undergo chemical changes, biotransformation, into more toxic or less toxic forms. Because of all of these variables, predicting toxic effects and performing risk assess- ments of compounds based solely on dose are less accurate than those that include data on absorption, distribution, metabolism (biotransformation), and excretion of the compound.
    [Show full text]
  • Reseptregisteret 2013–2017 the Norwegian Prescription Database
    LEGEMIDDELSTATISTIKK 2018:2 Reseptregisteret 2013–2017 Tema: Legemidler og eldre The Norwegian Prescription Database 2013–2017 Topic: Drug use in the elderly Reseptregisteret 2013–2017 Tema: Legemidler og eldre The Norwegian Prescription Database 2013–2017 Topic: Drug use in the elderly Christian Berg Hege Salvesen Blix Olaug Fenne Kari Furu Vidar Hjellvik Kari Jansdotter Husabø Irene Litleskare Marit Rønning Solveig Sakshaug Randi Selmer Anne-Johanne Søgaard Sissel Torheim Utgitt av Folkehelseinstituttet/Published by Norwegian Institute of Public Health Område for Helsedata og digitalisering Avdeling for Legemiddelstatistikk Juni 2018 Tittel/Title: Legemiddelstatistikk 2018:2 Reseptregisteret 2013–2017 / The Norwegian Prescription Database 2013–2017 Forfattere/Authors: Christian Berg, redaktør/editor Hege Salvesen Blix Olaug Fenne Kari Furu Vidar Hjellvik Kari Jansdotter Husabø Irene Litleskare Marit Rønning Solveig Sakshaug Randi Selmer Anne-Johanne Søgaard Sissel Torheim Acknowledgement: Julie D. W. Johansen (English text) Bestilling/Order: Rapporten kan lastes ned som pdf på Folkehelseinstituttets nettsider: www.fhi.no The report can be downloaded from www.fhi.no Grafisk design omslag: Fete Typer Ombrekking: Houston911 Kontaktinformasjon/Contact information: Folkehelseinstituttet/Norwegian Institute of Public Health Postboks 222 Skøyen N-0213 Oslo Tel: +47 21 07 70 00 ISSN: 1890-9647 ISBN: 978-82-8082-926-9 Sitering/Citation: Berg, C (red), Reseptregisteret 2013–2017 [The Norwegian Prescription Database 2013–2017] Legemiddelstatistikk 2018:2, Oslo, Norge: Folkehelseinstituttet, 2018. Tidligere utgaver / Previous editions: 2008: Reseptregisteret 2004–2007 / The Norwegian Prescription Database 2004–2007 2009: Legemiddelstatistikk 2009:2: Reseptregisteret 2004–2008 / The Norwegian Prescription Database 2004–2008 2010: Legemiddelstatistikk 2010:2: Reseptregisteret 2005–2009. Tema: Vanedannende legemidler / The Norwegian Prescription Database 2005–2009.
    [Show full text]
  • MIRADON FPO Brand of Anisindione Tablets
    R 1 2 3 4 5 3 4 F-16099775 1898 ® MIRADON FPO brand of anisindione Tablets DESCRIPTION MIRADON Tablets contain a syn- thetic anticoagulant, anisindione, an indanedione derivative. Each tablet contains 50 mg anisin- dione. They also contain: corn starch, FD&C Red No. 3, gelatin, lactose, and hydrogenated cotton- seed oil. ACTIONS Like phenindione, to which it is re- lated chemically, anisindione exercises its thera- peutic action by reducing the prothrombin activity of the blood. INDICATIONS Anisindione is indicated for the prophylaxis and treatment of venous thrombosis and its extension, the treatment of atrial fibrilla- tion with embolization, the prophylaxis and treat- ment of pulmonary embolism, and as an adjunct in the treatment of coronary occlusion. CONTRAINDICATIONS All contraindications to oral anticoagulant therapy are relative rather than absolute. Contraindications should be evaluated for each patient, giving consideration to the need for and the benefits to be achieved by anticoagu- lant therapy, the potential dangers of hemor- rhage, the expected duration of therapy, and the quality of patient monitoring and compliance. Hemorrhagic Tendencies or Blood Dyscrasias: In general, oral anticoagulants are contraindi- cated in patients who are bleeding or who have hemorrhagic blood dyscrasias or hemorrhagic tendencies (eg, hemophilia, polycythemia vera, purpura, leukemia) or a history of bleeding dia- thesis. They are contraindicated in patients with recent cerebral hemorrhage, active ulceration of the gastrointestinal tract, including ulcerative colitis, or open ulcerative, traumatic, or surgical wounds. Oral anticoagulants may be contraindi- cated in patients with recent or contemplated brain, eye, or spinal cord surgery or prostatec- tomy, and in those undergoing regional or lumbar block anesthesia or continuous tube drainage of the small intestine.
    [Show full text]
  • New Zealand Data Sheet 1
    New Zealand Data Sheet 1. PRODUCT NAME NAXEN® 250 mg tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each NAXEN 250 mg tablet contains 250 mg of Naproxen For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM NAXEN 250 mg tablets are yellow, biconvex, round tablet of 11 mm diameter with one face engraved NX250 and having a bisecting score. The score line is only to facilitate breaking for ease of swallowing and not to divide into equal doses. 4. CLINICAL PARTICULARS 4.1. Therapeutic indications NAXEN is indicated in adults for the relief of symptoms associated with rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, tendonitis and bursitis, acute gout and primary dysmenorrhoea. NAXEN is indicated in children for juvenile arthritis. 4.2. Dose and method of administration After assessing the risk/benefit ratio in each individual patient, the lowest effective dose for the shortest possible duration should be used (see Section 4.4). During long-term administration the dose of naproxen may be adjusted up or down depending on the clinical response of the patient. A lower daily dose may suffice for long-term administration. In patients who tolerate lower doses well, the dose may be increased to 1000 mg per day when a higher level of anti-inflammatory/analgesic 1 | P a g e activity is required. When treating patients with naproxen 1000 mg/day, the physician should observe sufficient increased clinical benefit to offset the potential increased risk. Dose Adults For rheumatoid arthritis, osteoarthritis and ankylosing spondylitis Initial therapy: The usual dose is 500-1000 mg per day taken in two doses at 12 hour intervals.
    [Show full text]
  • Part IV: Basic Considerations of the Psoralens
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector THE CHEMISTRY OF THE PSORALENS* W. L. FOWLKS, Ph.D. The psoralens belong to a group of compoundsfled since biological activity of the psoralens and which have been considered as derivatives ofangelicins has been demonstrated. They appear coumarin, the furocoumarins. There are twelveto have specific biochemical properties which different ways a furan ring can be condensed withmay contribute to the survival of certain plant the coumarin molecule and each of the resultingspecies. Specifically these compounds belong to compounds could be the parent for a family ofthat group of substances which can inhibit certain derivatives. Examples of most of these possibleplant growth without otherwise harming the furocoumarins have been synthesized; but natureplant (2, 3, 5). is more conservative so that all of the naturally It is interesting that it was this property which occurring furocoumarins so far described turnled to the isolation of the only new naturally out to be derivativesof psoralen I or angelicinoccuring furocoumarin discovered in the United II (1). States. Bennett and Bonner (2) isolated tharn- nosmin from leaves of the Desert Rue (Tham- n.osma montana) because a crude extract of this 0 0 plant was the best growth inhibitor found among /O\/8/O\/ the extracts of a number of desert plants sur- i' Ii veyed for this property, although all the extracts showed seedling growth inhibition. One could I II speculate as to the role such growth inhibition plays in the economy of those desert plants These natural derivatives of psoralen and angeli-when survival may depend upon a successful cm have one or more of the following substituentsfight for the little available water.
    [Show full text]
  • Regulation of Tissue Factor and Coagulation Activity;
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 341 Regulation of Tissue Factor and Coagulation Activity; Translation Studies with Focus on Platelet-Monocyte Aggregates and Patients with Acute Coronary Syndrome CHRISTINA CHRISTERSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 UPPSALA ISBN 978-91-554-7177-4 2008 urn:nbn:se:uu:diva-8669 ! " #$ %& #' ( )* " +, - . . , / /, %&, 0 - * / 12, - . * (3" 1 ( . 1 / , 1 , 45#, &$ , , 67 8$&38#353$#$$35, " )"+ 9 . , - .2 . ! . " ! . ! . 2 3 )("1+, ! . " . : %53; , - . 3 ! )*#<% 3 + , ; = 3 .! , - . ! , 6 )-*+ , ! , - ("13 . 3 ", ("1, * ("1 . . (3 -* 3 > , 1 ! 3 " . . , 3 . ! . , / ("1 " , ? (3 -* > , " / (3 - - ! "#$%&'% @ / / %& 7 #;#3;%; 67 8$&38#353$#$$35 ' ''' 3&;;8 ) 'AA ,!,A B C ' ''' 3&;;8+ To my family and to science This thesis is based on the following papers I. Christersson C, Oldgren J, Bylock A, Wallentin L, Sieg- bahn A. Long-term treatment with ximelagatran, an oral di- rect thrombin inhibitor, persistently reduces the coagula- tion activity after a myocardial
    [Show full text]