Sir William Henry Perkin: the Man and His 'Mauve'
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vibrationally Excited Hydrogen Halides : a Bibliography On
VI NBS SPECIAL PUBLICATION 392 J U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards National Bureau of Standards Bldg. Library, _ E-01 Admin. OCT 1 1981 191023 / oO Vibrationally Excited Hydrogen Halides: A Bibliography on Chemical Kinetics of Chemiexcitation and Energy Transfer Processes (1958 through 1973) QC 100 • 1X57 no. 2te c l !14 c '- — | NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas- urement Services and the following divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences" — Applied Radiation 2 — Quantum Electronics 1 — Electromagnetics 3 — Time 3 1 1 and Frequency — Laboratory Astrophysics — Cryogenics . -
Historical Group
Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 61 Winter 2012 Registered Charity No. 207890 COMMITTEE Chairman: Prof A T Dronsfield, School of Education, | Prof J Betteridge (Twickenham, Middlesex) Health and Sciences, University of Derby, | Dr N G Coley (Open University) Derby, DE22 1GB [e-mail [email protected]] | Dr C J Cooksey (Watford, Hertfordshire) Secretary: | Prof E Homburg (University of Maastricht) Prof W P Griffith, Department of Chemistry, | Prof F James (Royal Institution) Imperial College, South Kensington, London, | Dr D Leaback (Biolink Technology) SW7 2AZ [e-mail [email protected]] | Dr P J T Morris (Science Museum) Treasurer; Membership Secretary: | Prof. J. W. Nicholson (University of Greenwich) Dr J A Hudson, Graythwaite, Loweswater, | Mr P N Reed (Steensbridge, Herefordshire) Cockermouth, Cumbria, CA13 0SU | Dr V Quirke (Oxford Brookes University) [e-mail [email protected]] | Dr S Robinson (Ham, Surrey) Newsletter Editor: | Prof. H. Rzepa (Imperial College) Dr A Simmons, Epsom Lodge, | Dr. A Sella (University College) La Grande Route de St Jean,St John, Jersey, JE3 4FL [e-mail [email protected]] Newsletter Production: Dr G P Moss, School of Biological and Chemical, Sciences Queen Mary University of London, Mile End Road, London E1 4NS [e-mail [email protected]] http://www.chem.qmul.ac.uk/rschg/ http://www.rsc.org/membership/networking/interestgroups/historical/index.asp Contents From the Editor 2 RSC Historical Group News - Bill Griffith 3 Identification Query - W. H. Brock 4 Members’ Publications 5 NEWS AND UPDATES 6 USEFUL WEBSITES AND ADDRESSES 7 SHORT ESSAYS 9 The Copperas Works at Tankerton - Chris Cooksey 9 Mauveine - the final word? (3) - Chris Cooksey and H. -
Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling)
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-8-2013 12:00 AM Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling) Rana Sabouni The University of Western Ontario Supervisor Prof. Sohrab Rohani The University of Western Ontario Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Rana Sabouni 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Chemical Engineering Commons Recommended Citation Sabouni, Rana, "Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling)" (2013). Electronic Thesis and Dissertation Repository. 1472. https://ir.lib.uwo.ca/etd/1472 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i CARBON DIOXIDE ADSORPTION BY METAL ORGANIC FRAMEWORKS (SYNTHESIS, TESTING AND MODELING) (Thesis format: Integrated Article) by Rana Sabouni Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada Rana Sabouni 2013 ABSTRACT It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and various methods have been reported for the CO2 capturing including adsorption onto zeolites, porous membranes, and absorption in amine solutions. -
P-Chloro-O-Toluidine and Its Hydrochloride Al
Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc p-Chloro-o-toluidine and Its Hydrochloride al. 1979, Bentley et al. 1986, IARC 2000). In organs from animals ex- posed to p-chloro-o-toluidine, DNA breakage was detected by single- CAS Nos. 95-69-2 and 3165-93-3 cell gel electrophoresis (comet assay) in mouse liver, urinary bladder, lung, and brain and in rat liver and kidney (Sekihashi et al. 2002). Reasonably anticipated to be human carcinogens First listed in the Eighth Report on Carcinogens (1998) Properties Also known as 4-chloro-o-toluidine or 4-chloro-2-methylaniline p-Chloro-o-toluidine is a chlorinated aromatic amine that exists as a grayish-white crystalline solid or leaflet, andp -chloro-o-toluidine hy- CH3 drochloride is a buff-colored or light-pink powder at room tempera- ture. The base compound is practically insoluble in water or carbon NH2 tetrachloride but is soluble in ethanol or dilute acid solutions. It is stable under normal temperatures and pressures (Akron 2009). Phys- Cl ical and chemical properties of p-chloro-o-toluidine are listed in the following table. No physical and chemical properties for the hydro- Carcinogenicity chloride were found except its molecular weight of 178.1 and melt- p-Chloro-o-toluidine and its hydrochloride salt are reasonably antic‑ ing range of 265°C to 270°C (IARC 2000, Weisburger 1978). ipated to be human carcinogens based on limited evidence of carci- Property Information nogenicity from studies in humans and evidence of carcinogenicity Molecular weight 141.6a from studies in experimental animals. -
PDMS-Based Antimicrobial Surfaces for Healthcare Applications
PDMS-based Antimicrobial Surfaces for Healthcare Applications This thesis is presented to UCL in partial fulfilment of the requirements for the Degree of Doctor of Philosophy Ekrem Ozkan Supervised by Professor Ivan P. Parkin Materials Chemistry Research Centre Dr Elaine Allan Division of Microbial Diseases 2017 1 DECLARATION I, Ekrem Ozkan confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 ABSTRACT This thesis describes two types of approaches for reducing the incidence of hospital- acquired infections (HAIs), which are chemical approaches that inactivate bacteria that adhere to the surface i.e. bactericidal activity and physical approaches that inhibit initial bacterial attachment to the surface i.e. anti-biofouling activity. Specifically, the antimicrobial polydimethylsiloxane (PDMS)-based systems detailed in this thesis are: (i) photosensitizer, crystal violet (CV),-coated PDMS for both medical device and hospital touch surface applications, (ii) crystal violet-coated, zinc oxide nanoparticle-encapsulated PDMS for hospital touch surface applications, (iii) superhydrophobic antibacterial copper coated PDMS films via aerosol assisted chemical vapour deposition (AACVD) for hospital touch surface applications and (iv) slippery copper-coated PDMS films to prevent biofilm formation on medical devices. The materials were characterized using techniques including: X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis absorbance spectroscopy, water-contact angle measurement and microbiology tests. Functional testing indicated that CV-coated samples were suitable for targeted applications and showed potent light-activated antimicrobial activity when tested against model Gram-positive bacteria, Staphylococcus aureus, and Gram-negative bacteria, Escherichia coli, associated with hospital-acquired infections, with > 4 log reduction in viable bacterial numbers observed. -
Ortho-TOLUIDINE
ortho-TOLUIDINE 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 95–53–4 CAS Name: 2-Methylbenzenamine Synonyms: 1-Amino-2-methylbenzene; 2-amino-1-methylbenzene; 2-aminotoluene; ortho-aminotoluene; 2-methyl-1-aminobenzene; 2-methylaniline; ortho-methylaniline; ortho-methylbenzenamine; 2-methylphenylamine; 2- tolylamine; ortho-tolylamine 1.1.2 Structural formula, molecular formula, and relative molecular mass NH2 CH3 C7H9N Rel. mol. mass: 107.15 1.1.3 Chemical and physical properties of the pure substance Description: Light yellow liquid becoming reddish brown on exposure to air and light (O’Neil, 2006) Boiling-point: 200–201 °C (O’Neil, 2006) Melting-point: −14.41 °C (Lide, 2008) Solubility: Slightly soluble in water; soluble in diethyl ether, ethanol and dilute acids (O’Neil, 2006) Octanol/water partition coefficient: log P, 1.29–1.32 (Verschueren, 2001) –407– 408 IARC MONOGRAPHS VOLUME 99 1.1.4 Technical products and impurities No information was available to the Working Group. 1.1.5 Analysis ortho-Toluidine is the most widely studied of the aromatic amines reviewed in this Volume. Waste-water, air and urine samples have been analysed. The use of LC/MS and LC with electrochemical detection provides detection limits down to the nanomol level. ortho-Toluidine is one of the amines detected as a reduction product of azo dyes used as toy colourants. Table 1.1 presents selected methods of detection and quantification of ortho-toluidine in various matrices. Table 1.1. Selected methods of analysis of ortho-toluidine in various matrices Sample Sample preparation Assay method Detection limit Reference matrix Toys Sodium dithionite HPLC/UV 0.2 μg/g Garrigós et al. -
Financial Statements and Trustees' Report 2017
Royal Society of Chemistry Financial Statements and Trustees’ Report 2017 About us Contents We are the professional body for chemists in the Welcome from our president 1 UK with a global community of more than 50,000 Our strategy: shaping the future of the chemical sciences 2 members in 125 countries, and an internationally Chemistry changes the world 2 renowned publisher of high quality chemical Chemistry is changing 2 science knowledge. We can enable that change 3 As a not-for-profit organisation, we invest our We have a plan to enable that change 3 surplus income to achieve our charitable objectives Champion the chemistry profession 3 in support of the chemical science community Disseminate chemical knowledge 3 and advancing chemistry. We are the largest non- Use our voice for chemistry 3 governmental investor in chemistry education in We will change how we work 3 the UK. Delivering our core roles: successes in 2017 4 We connect our community by holding scientific Champion for the chemistry profession 4 conferences, symposia, workshops and webinars. Set and maintain professional standards 5 We partner globally for the benefit of the chemical Support and bring together practising chemists 6 sciences. We support people teaching and practising Improve and enrich the teaching and learning of chemistry 6 chemistry in schools, colleges, universities and industry. And we are an influential voice for the Provider of high quality chemical science knowledge 8 chemical sciences. Maintain high publishing standards 8 Promote and enable the exchange of ideas 9 Our global community spans hundreds of thousands Facilitate collaboration across disciplines, sectors and borders 9 of scientists, librarians, teachers, students, pupils and Influential voice for the chemical sciences 10 people who love chemistry. -
Former Fellows Biographical Index Part
Former Fellows of The Royal Society of Edinburgh 1783 – 2002 Biographical Index Part Two ISBN 0 902198 84 X Published July 2006 © The Royal Society of Edinburgh 22-26 George Street, Edinburgh, EH2 2PQ BIOGRAPHICAL INDEX OF FORMER FELLOWS OF THE ROYAL SOCIETY OF EDINBURGH 1783 – 2002 PART II K-Z C D Waterston and A Macmillan Shearer This is a print-out of the biographical index of over 4000 former Fellows of the Royal Society of Edinburgh as held on the Society’s computer system in October 2005. It lists former Fellows from the foundation of the Society in 1783 to October 2002. Most are deceased Fellows up to and including the list given in the RSE Directory 2003 (Session 2002-3) but some former Fellows who left the Society by resignation or were removed from the roll are still living. HISTORY OF THE PROJECT Information on the Fellowship has been kept by the Society in many ways – unpublished sources include Council and Committee Minutes, Card Indices, and correspondence; published sources such as Transactions, Proceedings, Year Books, Billets, Candidates Lists, etc. All have been examined by the compilers, who have found the Minutes, particularly Committee Minutes, to be of variable quality, and it is to be regretted that the Society’s holdings of published billets and candidates lists are incomplete. The late Professor Neil Campbell prepared from these sources a loose-leaf list of some 1500 Ordinary Fellows elected during the Society’s first hundred years. He listed name and forenames, title where applicable and national honours, profession or discipline, position held, some information on membership of the other societies, dates of birth, election to the Society and death or resignation from the Society and reference to a printed biography. -
EXPERIMENT 2 SEPARATION of a MIXTURE of P-TOLUIDINE AND
EXPERIMENT 2 1:: SEPARATION OF A MIXTURE OF p-TOLUIDINE AND NAPHTHALENE BY SOLVENT EXTRACTION AND IDENTI- FICATION OF THEIR FUNCTIONAL GROUPS 4: 2.1 Introduction Objectives - 2.2 Principle 2.3 Requirements Identification of functional.groups 2.5 Result 2.1 INTROD-UCTION In the previous experiment you have separated a mixture containing two acidic and one neutral compound. The extracting solutions were aqueous bases. In this experiment you will be seperating a mixture of a basic and a neutral compound. As you will recall from sec. 1.2 of experiment 1 that this will require an aqueous'acidic solution. The basic compound after separation is recovered by re extraction. Objeetives After srudying and performing this experiment you should be able to : . separate a mixture of a neutral and a basic organic compound by solvent extraction technique, identify the functional group of the separated compounds, and describe the theory behind the above. 2.2 PRINCIPLE This mixture contains a basic compound, p-toluidine, and a neutral compound viz., naphthalene. Their separation is quite straight forward. You will recall from above that a basic compound can be extracted by an aqueous solution of an acid. As this mixture contains only one basic compound (as against two acidic compounds in the previous experiment), you don't need to bother about which acid to use for extraction. A strong acid like HCI is definitely a good choice and will afford an effective separation. The hydrochloric acid will convertp-toluidine into its hydrochloride salt which on extraction will moFVeinto aqueous layer. Separation of a Mixture of p-Toluidine and Naphthakne by Solvent Extraction and IdenH- Ucatkm dthelr FuaEtiooal C~P Q NII: HCI NI I,C'I- - + NH2 @-toluidine) @-tohidine hydrochldride) p-Toluidine Freep-toluidine can be recovered by hydrolping this salt with an aqueous base. -
(12) United States Patent (10) Patent No.: US 6,242,602 B1 Giri Et Al
USOO62426O2B1 (12) United States Patent (10) Patent No.: US 6,242,602 B1 Giri et al. (45) Date of Patent: Jun. 5, 2001 (54) ONE POTSYNTHESIS OF G. F. Bettinetti et al., “Synthesis of 5, 10-Dialkyl-5, 5,10-DIHYDROPHENAZINE COMPOUNDS 10-dihydrophenazines”, Synthesis, Nov. 1976, pp. 748-749. AND 5,10-SUBSTITUTED DHYDROPHENAZINES B. M. Mikhailov et al., “Metal Compounds of Phenazine and Their Transformations', 1950, Chemical Abstracts, vol. 44, (75) Inventors: Punam Giri; Harlan J. Byker; Kelvin pp. 9452–9453. L. Baumann, all of Holland, MI (US) Axel Kistenmacher et al., “Synthesis of New Soluble Triph (73) Assignee: Gentex Corporation, Zeeland, MI (US) enodithiazines and Investigation of Their Donor Properties”, Chem. Ber, 1992, 125, pp. 1495–1500. (*) Notice: Subject to any disclaimer, the term of this Akira Sugimoto et al., “Preparation and Properties of Elec patent is extended or adjusted under 35 tron Donor Acceptor Complexes of the Compounds Having U.S.C. 154(b) by 0 days. Capto-Dative Substituents', Mar.-Apr. 1989, vol. 26, pp. (21) Appl. No.: 09/280,396 435-438. (22) Filed: Mar. 29, 1999 Primary Examiner Richard L. Raymond (51) Int. Cl." ....................... C07D 241/46; CO7D 241/48 ASSistant Examiner Ben Schroeder (52) U.S. Cl. ............................................. 544/347; 544/347 (74) Attorney, Agent, or Firm-Brian J. Rees; Factor & (58) Field of Search ............................................... 544/347 Partners, LLC (56) References Cited (57) ABSTRACT U.S. PATENT DOCUMENTS Dihydrophenazines and bis(dihydrophenazines) are pre 2,292,808 8/1942 Waterman et al. .................. 260/267 pared in high yield under commercially viable reaction 2,332,179 10/1943 Soule .................................. -
Perkin's Mauve: the History of the Chemistry
REFLECTIONS Perkin’s Mauve: The History of the Chemistry Andrew Filarowski Those of us who owe our living in part to the global dyestuff and chemical industry should pause today and remember the beginnings of this giant industry which started 150 years ago today with William Perkins’ discovery of mauveine whilst working in his home laboratory during the Easter holiday on April 28, 1856. Prior to this discovery, all textiles were dyed with natural dyestuffs and pigments. What did Perkin’s Reaction Entail? William Henry Perkin carried out his experiments at his home laboratory in the Easter break of 1856. He was trying to produce quinine (C20H24N2O2). This formula was known but not the structural formula. Because chemistry was in such an early stage of development Perkin thought that by simply balancing the masses (simple additive and subtractive chemistry) in an equation he would obtain the required compound. He therefore believed that if he took two allyltoluidine molecules, C10H13N, and oxidised them with three oxygen atoms (using potassium dichromate) he would get quinine (C20H24N2O2) and water. 2 (C10H13N) + 3O C20H24N2O2 + H2O It is unsurprising to us now but Perkin reported “that no quinine was formed, but only a dirty reddish brown precipitate.” However, he continued in his trials and decided to use aniline (C6H5NH2) and its sulphate, and to oxidise them using potassium dichromate. This produced a black precipitate that Perkin at first took to be a failed experiment, but he noticed on cleaning his equipment with alcohol that a coloured solution was obtained. Perkin’s Patent W H Perkin filed his patent on the 26th August 1856 for “Producing a new colouring matter for the dyeing with a lilac or purple color stuffs of silk, cotton, wool, or other materials.” (sic) Patent No. -
(8 PAGES) Subject Index, Vol:9, P.429, 1986
SUBJECT INDEX 1955-1985 moat-cited works 355 aatronomy 1961-1982 most-cited articles 55,118 1964 most-cited articles on 374 1976-1983 250,361 review articlea on 147 1963 most-citad articles, chemistry 413 Atlas of Science 1964 moat-citad articles planning for 41,44,46 Iife sciences 369 Attachment and Loss 35 physical acience 366 authora 1964 most-cited primary authors 346,355 name ordering on papers 353 1984 208,221 number of 393 1985 Nobel Prize awards and prizes, NAS Award for Excellence chemistry 336 in Scientific Reviewing 146 economics 307 literature 307,312 medicine 282 physics 336,340 1986 NAS Award for Excellence in Baruch, Bernard 114 Scientific Reviewing 146 La Bataille de Pharsale 314 The Battle of Pharsalus 314 A Beckett, Samuel 218 Beilstein, Friedrich 44 Benitez Sanchez, Jose 160 AIDS research, French and American Berzelius, Jons Jakob 1 contributions 347,391 bibliographies, editing with Sci-Mate Alice’s Adventuresin Wonderland 296 Editor 81 Allen, Gordon 43 The Biochemists’ Songbook 50 allergies BioGraffiti: A Natural Selection 49 effect of breaat feeding on 181 biomedical decision-making, role of effect of stress on 141 hospital library in 197,202 Analysis of Secretarial Duties and biomedical education curricula 27 Traits 114 Block, Konrad E. 282 animal studies, unreliability of transferring Bohr, Niels 6 results to humana 407 A Book of Science Verse 53 Annual Review of Physical Chemistry 9 breast feeding Arrhenius, Svante August 2 factors affecting choice of 165 art merits of mother’s milk 155 at ISI 130,176,228 Breastfeeding Handfwok 162 commissioned forlSI’s Caring Canter for Breastfeedirrg: A Guide for the Medical Children and Parents 260 Profession 156 role of turtle in 293 Brown, Michael S.