Proof of the Brouwer Fixed-Point Theorem: a Simple-Calculus Approach

Total Page:16

File Type:pdf, Size:1020Kb

Proof of the Brouwer Fixed-Point Theorem: a Simple-Calculus Approach Ekonomi dan Keuangan Indonesia Vol 39, No. 3, 1991 Proof of the Brouwer Fixed-Point Theorem: A Simple-Calculus Approach Irsan Azhary Saleh ABSTRAK Kendatipun ieorema titik-tetap Brouwer merupakan landasan penting untuk memahami model-model keseimbangan umum yang relatif telah dikenal luas, namun konsep dan pembuktian dari teorema yang bersangkutan ini kurang mendapat perhatian atau hampir tidak pernah dianalisa sebeiumnya di Indone• sia. Tulisan ini bertujuan untuk membuktikan teorema titik tetap Brouwer dengan menggunakan pendekatan kalkulus, suatu metode pembuktian yang relatif sangat sederhana jika dibandingkan dengan metode-metode lain yang secara konvenstonal telah sering digunakan, yakni antara lain misalnya: teori homologi, bentuk-bentuk diferensial, argumen kombinatorial, serta topologi geometris. 217 1 Saleh 1. INTRODUCTION The Brouwer fixed-point theorem is one of the most important results in modern mathematics. It is easy to state but hard to prove. The statement is easy enough to be understood by anyone, even by someone who cannot add or substract. This is in essence what the Brouwer theorem says in everyday terms: Think of a person is sitting down with a cup of coffee. Gently and continuously he or she swtrls the coffee about in the cup. He or she then puts the cup down, and lets the motion subside. When the coffee is still, Brouwer says there is ai least one point in the coffee that has returned to the exact spot in the cup where it was when the person first sat down. Regardless of its simplicity in this everyday terms, however, the proof of the Brouwer theorem has been usually difficult that it has 'been taught only in graduate courses on topology. The Brouwer theorem has many applications in various mathe• matical disciplines. In mathematical analysis, as an example, it is an essential tool in the theory of ordinary differential equations. In its extension by Schauder and Leray, the fixed-point theorem is used to establish previous• ly unattainable results in the theory of nonlinear partial differential equations and integral equations, Browder (1967), Brezis and Browder (1975). In mathe• matical economics, as another example, in its primitive application the Brouwer theorem is used to prove the existence of an equilibrium in a pure exchange economy. Although this type of an economy is very simplistic and unrealistic, the existence proof contains the essential features of arguments for existence in more general equilibrium models. One of the famous interesting applications of the Brouwer theorem outside of topology is a proof of the minimax theorem of game theory given by von Neumann in 1928 (see Nikaido, 1970, Chapter 7). It should be noted that in terms of the last two examples the Brouwer fixed-point theorem, as it was originally stated in I9I0 and commonly proved, is a pure existence theorem. The theorem, however, was later put in a more useful form. Extensions in this direction were initiated by von Neumann (1938) in connection with general economic equilibrium model, which is often considered as the first sophisticated application of the Brouwer fixed-point theorem to an economic problem. Somewhat later, Kakutani (I94I) generalized the Brouwer theorem to correspondences, which not only allows numerous applications in economic theory and its related fields but also has stimulated further extensions by authors, such as: Eilenberg and Montgomery (1946) working on multivalued transformation which relies on algebraic topological notions; Nash (1950) proving the existence of equilibria for games where the players' preferences are representable by continuous quasi-concave utilities and the strategy sets are simplexes; Debreu (1952) proving the existence of equilibrium for abstract economics; Arrow and Debreu (1954) proving the existence of Walrasian equilibrium of an economy; Moore (1968) replacing the term semi-continuity with hemi-continuity in 218 Proof of the Brouwer Fixed-Point Theorem: A Simple-Calculus Approach referring to correspondences, which helps to avoid confusion with semi-conti• nuity of real-valued functions; and, even further, less than two decades ago. Scarf (1973) who has developed a remarkable algorithm that can easily be implemented on computers to give a method of approximating a fixed-point for a continuous mapping of a price vector into itself. This fixed-point algo• rithm, for practical purposes and policy analysis, has contributed significantly in solving complex and computable general equilibrium models. Comparable to or in point of Scarf algorithm are, among others, works due to Kuhn (1969), MacKinnon (in Karamardian, 1977), and Todd (1980). | In Indonesia it seems to be evident that, for the last few years, there has been a growing interest in the methods of general equilibrium analysis, in particular with regard to the topics of computable general equilibrium model. Such an interest is relevant to the current tendency of globalization at almost any level of the economy, because via general equilibrium approach one can explore how to solve complex models which simulate many of the simul• taneous interdependencies which exist in an economy. Of course, there are many situations in which the theoretically and computationally simpler methods of partial equilibrium analysis are appropriate. However, there are certain problems where the income and other-price effects operate to shift the supply and demand curves used in partial equilibrium analysis and where these feedback effects are the central feature of interest. Examples of this are the formation of a tariff customs union or a change in the tax on one major production input such as capital. In this type of problem, a general equi• librium model is appropriate because we are interested in what effects the policy change will have on many different markets and because what happens in other markets crucially affects any one market of interest. Furthermore, it is a characteristic of such policy changes that they are not marginal so that linear approximation (as in economies with leontief technologies) is a poor way to specify relevant demand and supply functions, Cornwall (1984). We are now already aware that Brouwer fixed point theorem (and understanding its proof) is a basic mathematical tool used in showing the existence of solution concepts in game theory and economics, especially in regard to general equilibrium analysis. Unfortunately, the exposition on this, at least in Indonesia, seems to be quite limited and rather abandoned. Therefore, as the title reflects, the purpose of this paper is to give a relative nonrigorous note for understanding the proof of the Brouwer fixed-point theorem. While there are many excellent readings available on the topic we are discussing about, most of them are inaccessible to a typical well-trained economist. Generally speaking, the reason, why proofs of the Brouwer fixed- point theorem have been difficult because they have used combinatorial argu• ments, differential forms, homology theory, or geometric topology. That is why, in this paper, we are taking a somewhat significantly different direction; all we need to now is just calculus, plus a supporting tool of analysis called contraction-mapping principle which is going to be discussed in Section II. In Section III, we can then proceed with the formal proof of the Brouwer 219 Saleh theorem. John Milnor (1978) deserves the full credit for his initiating work on using calculus for the proof of the theorem. The bulk of Section III is, in essence, a recast of Milnor's article which is only four pages long! So, what the author is trying to do is to rewrite out Milnor's original article in great detail and, hopefully, in much less rigorous fashion. II. CONTRACTIONS MAPPING PRINCIPLE Fixed-point theorem is a one that refers to an equation x = /(x). (1) Usually, the theorem gives conditions for the existence of a solution. The function / may be thought of as a mapping. Then a solution x is a point that the mapping leaves fixed. There are many varieties of fixed point theorems. Some gives conditions for uniqueness or multiplicity of solutions. Some fixed-point theorems are constructive; most are not. The Brouwer theorem is not. It just tells us a solution exists; it is up to us to find it. If it is true that equation (1) is a fixed-point equation, one can then infer that every equation is a fixed point equation. The reason is simple. Suppose this equation is given: ^(x) = 0. Then we can write the fixed-point equation x = x + g(x) (2) or, if we prefer, X = x-83s(x). In general we can write the equation ^(x) = 0 cis the fixed-point equation x = x + (j>[g{x)] / (3) provided that <j)[g] = 0 iff g = 0. So when we talk generally about fixed- point equations, we are talking about all equations. The contraction mapping principle is an exception among fixed-point theorems: it is constructive. We can use the method of proof to construct a solution. The method is called the method of successive approximations. In its elementary form, the contraction mapping theorem says this: Let M be a closed set of real numbers, and suppose the function / maps M into itself. Finally, suppose / is a contraction mapping: \fia)-fm<&\a-b\, (4) 220 Proof of the. Brouwer Fixed-Point Theorem: A Simple-Calculus Approach where 0 <6 <1. Conclusion: The mapping / has a unique fixed point in Af. Uniqueness is easy to prove. If there were two fixed points, a and 6, then the contraction property implies |a-6| = |/(a)-/(6)|<%-6|. (5) Then a - 6 = 0 because 0 < ^ < 1. To prove the existence of a fixed point, we will use an iterative scheme. Start with any XQ in M, and compute the successive approximations ^n + i = /K) (n = 0,l,2,...). (6) We will prove that the sequence converges. That will suffice. If x^-x x, then the limit x must lie in M because all the x„ lie in AI and M is closed {M contains all its limit points).
Recommended publications
  • Lectures on Some Fixed Point Theorems of Functional Analysis
    Lectures On Some Fixed Point Theorems Of Functional Analysis By F.F. Bonsall Tata Institute Of Fundamental Research, Bombay 1962 Lectures On Some Fixed Point Theorems Of Functional Analysis By F.F. Bonsall Notes by K.B. Vedak No part of this book may be reproduced in any form by print, microfilm or any other means with- out written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 5 Tata Institute of Fundamental Research Bombay 1962 Introduction These lectures do not constitute a systematic account of fixed point the- orems. I have said nothing about these theorems where the interest is essentially topological, and in particular have nowhere introduced the important concept of mapping degree. The lectures have been con- cerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite di- mensional spaces. A wide choice of techniques is available for linear problems, and I have usually chosen to use those that give something more than existence theorems, or at least a promise of something more. That is, I have been interested not merely in existence theorems, but also in the construction of eigenvectors and eigenvalues. For this reason, I have chosen elementary rather than elegant methods. I would like to draw special attention to the Appendix in which I give the solution due to B. V. Singbal of a problem that I raised in the course of the lectures. I am grateful to Miss K. B. Vedak for preparing these notes and seeing to their publication.
    [Show full text]
  • The Hairy Klein Bottle
    Bridges 2019 Conference Proceedings The Hairy Klein Bottle Daniel Cohen1 and Shai Gul 2 1 Dept. of Industrial Design, Holon Institute of Technology, Israel; [email protected] 2 Dept. of Applied Mathematics, Holon Institute of Technology, Israel; [email protected] Abstract In this collaborative work between a mathematician and designer we imagine a hairy Klein bottle, a fusion that explores a continuous non-vanishing vector field on a non-orientable surface. We describe the modeling process of creating a tangible, tactile sculpture designed to intrigue and invite simple understanding. Figure 1: The hairy Klein bottle which is described in this manuscript Introduction Topology is a field of mathematics that is not so interested in the exact shape of objects involved but rather in the way they are put together (see [4]). A well-known example is that, from a topological perspective a doughnut and a coffee cup are the same as both contain a single hole. Topology deals with many concepts that can be tricky to grasp without being able to see and touch a three dimensional model, and in some cases the concepts consists of more than three dimensions. Some of the most interesting objects in topology are non-orientable surfaces. Séquin [6] and Frazier & Schattschneider [1] describe an application of the Möbius strip, a non-orientable surface. Séquin [5] describes the Klein bottle, another non-orientable object that "lives" in four dimensions from a mathematical point of view. This particular manuscript was inspired by the hairy ball theorem which has the remarkable implication in (algebraic) topology that at any moment, there is a point on the earth’s surface where no wind is blowing.
    [Show full text]
  • Chapter 3 the Contraction Mapping Principle
    Chapter 3 The Contraction Mapping Principle The notion of a complete space is introduced in Section 1 where it is shown that every metric space can be enlarged to a complete one without further condition. The importance of complete metric spaces partly lies on the Contraction Mapping Principle, which is proved in Section 2. Two major applications of the Contraction Mapping Principle are subsequently given, first a proof of the Inverse Function Theorem in Section 3 and, second, a proof of the fundamental existence and uniqueness theorem for the initial value problem of differential equations in Section 4. 3.1 Complete Metric Space In Rn a basic property is that every Cauchy sequence converges. This property is called the completeness of the Euclidean space. The notion of a Cauchy sequence is well-defined in a metric space. Indeed, a sequence fxng in (X; d) is a Cauchy sequence if for every " > 0, there exists some n0 such that d(xn; xm) < ", for all n; m ≥ n0. A metric space (X; d) is complete if every Cauchy sequence in it converges. A subset E is complete if (E; d E×E) is complete, or, equivalently, every Cauchy sequence in E converges with limit in E. Proposition 3.1. Let (X; d) be a metric space. (a) Every complete set in X is closed. (b) Every closed set in a complete metric space is complete. In particular, this proposition shows that every subset in a complete metric space is complete if and only if it is closed. 1 2 CHAPTER 3. THE CONTRACTION MAPPING PRINCIPLE Proof.
    [Show full text]
  • Introduction to Fixed Point Methods
    Math 951 Lecture Notes Chapter 4 { Introduction to Fixed Point Methods Mathew A. Johnson 1 Department of Mathematics, University of Kansas [email protected] Contents 1 Introduction1 2 Contraction Mapping Principle2 3 Example: Nonlinear Elliptic PDE4 4 Example: Nonlinear Reaction Diffusion7 5 The Chaffee-Infante Problem & Finite Time Blowup 10 6 Some Final Thoughts 13 7 Exercises 14 1 Introduction To this point, we have been using linear functional analytic tools (eg. Riesz Representation Theorem, etc.) to study the existence and properties of solutions to linear PDE. This has largely followed a well developed general theory which proceeded quite methodoligically and has been widely applicable. As we transition to nonlinear PDE theory, it is important to understand that there is essentially no widely developed, overaching theory that applies to all such equations. The closest thing I would way that exists is the famous Cauchy- Kovalyeskaya Theorem, which asserts quite generally the local existence of solutions to systems of partial differential equations equipped with initial conditions on a \noncharac- teristic" surface. However, this theorem requires the coefficients of the given PDE system, the initial data, and the surface where the IC is described to all be real analytic. While this is a very severe restriction, it turns out that it can not be removed. For this reason, and many more, the Cauchy-Kovalyeskaya Theorem is of little practical importance (although, it is obviously important from a historical context... hence why it is usually studied in Math 950). 1Copyright c 2020 by Mathew A. Johnson ([email protected]). This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
    [Show full text]
  • Topology - Wikipedia, the Free Encyclopedia Page 1 of 7
    Topology - Wikipedia, the free encyclopedia Page 1 of 7 Topology From Wikipedia, the free encyclopedia Topology (from the Greek τόπος , “place”, and λόγος , “study”) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736. Toward the end of the 19th century, a distinct A Möbius strip, an object with only one discipline developed, which was referred to in Latin as the surface and one edge. Such shapes are an geometria situs (“geometry of place”) or analysis situs object of study in topology. (Greek-Latin for “picking apart of place”). This later acquired the modern name of topology. By the middle of the 20 th century, topology had become an important area of study within mathematics. The word topology is used both for the mathematical discipline and for a family of sets with certain properties that are used to define a topological space, a basic object of topology. Of particular importance are homeomorphisms , which can be defined as continuous functions with a continuous inverse. For instance, the function y = x3 is a homeomorphism of the real line. Topology includes many subfields. The most basic and traditional division within topology is point-set topology , which establishes the foundational aspects of topology and investigates concepts inherent to topological spaces (basic examples include compactness and connectedness); algebraic topology , which generally tries to measure degrees of connectivity using algebraic constructs such as homotopy groups and homology; and geometric topology , which primarily studies manifolds and their embeddings (placements) in other manifolds.
    [Show full text]
  • Multi-Valued Contraction Mappings
    Pacific Journal of Mathematics MULTI-VALUED CONTRACTION MAPPINGS SAM BERNARD NADLER,JR. Vol. 30, No. 2 October 1969 PACIFIC JOURNAL OF MATHEMATICS Vol. 30, No. 2, 1969 MULTI-VALUED CONTRACTION MAPPINGS SAM B. NADLER, JR. Some fixed point theorems for multi-valued contraction mappings are proved, as well as a theorem on the behaviour of fixed points as the mappings vary. In § 1 of this paper the notion of a multi-valued Lipschitz mapping is defined and, in § 2, some elementary results and examples are given. In § 3 the two fixed point theorems for multi-valued contraction map- pings are proved. The first, a generalization of the contraction mapping principle of Banach, states that a multi-valued contraction mapping of a complete metric space X into the nonempty closed and bounded subsets of X has a fixed point. The second, a generalization of a result of Edelstein, is a fixed point theorem for compact set- valued local contractions. A counterexample to a theorem about (ε, λ)-uniformly locally expansive (single-valued) mappings is given and several fixed point theorems concerning such mappings are proved. In § 4 the convergence of a sequence of fixed points of a convergent sequence of multi-valued contraction mappings is investigated. The results obtained extend theorems on the stability of fixed points of single-valued mappings [19]. The classical contraction mapping principle of Banach states that if {X, d) is a complete metric space and /: X —> X is a contraction mapping (i.e., d(f(x), f(y)) ^ ad(x, y) for all x,y e X, where 0 ^ a < 1), then / has a unique fixed point.
    [Show full text]
  • MATH534A, Problem Set 8, Due Nov 13
    MATH534A, Problem Set 8, due Nov 13 All problems are worth the same number of points. 1. Let M; N be smooth manifolds of the same dimension, F : M ! N be a smooth map, and let A ⊂ M have measure 0. Prove that F (A) has measure 0. 2. Let M be a smooth manifold, and let A ⊂ M have measure 0. Prove that A 6= M. 3. Let M be a smooth manifold of dimension m, and let π : TM ! M be the natural projection, −1 m m π(p; v) = p. For a chart (U; φ) on M, define φ^: π (U) ! R × R by φ^(p; v) = (φ(p); dpφ(v)): (a) Prove that there is a unique topology on TM such that for any chart (U; φ) on M the set −1 −1 2m π (U) ⊂ TM is open, and φ^ maps π (U) homeomorphically to an open subset of R . (b) Show that TM with this topology is Hausdorff and second countable. Hence show that TM endowed with charts (π−1(U); φ^) is a smooth manifold. 4. (a) Let F : M ! N be a smooth map. Consider the map dF : TM ! TN given by dF (p; v) = (F (p); dpF (v)). This map is sometimes called the global differential of F (but it is also okay to call it the differential of F ). Prove that this map is smooth. n n (b) Let F : M ! R be a smooth map. Consider the map TM ! R given by (p; v) 7! dpF (v). Prove that this map is smooth.
    [Show full text]
  • The Contraction Mapping Principle and Some Applications
    Electronic Journal of Differential Equations, Monograph 09, 2009, (90 pages). ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) THE CONTRACTION MAPPING PRINCIPLE AND SOME APPLICATIONS ROBERT M. BROOKS, KLAUS SCHMITT Abstract. These notes contain various versions of the contraction mapping principle. Several applications to existence theorems in the theories of dif- ferential and integral equations and variational inequalities are given. Also discussed are Hilbert’s projective metric and iterated function systems Contents Part 1. Abstract results 2 1. Introduction 2 2. Complete metric spaces 2 3. Contraction mappings 15 Part 2. Applications 25 4. Iterated function systems 25 5. Newton’s method 29 6. Hilbert’s metric 30 7. Integral equations 44 8. The implicit function theorem 57 9. Variational inequalities 61 10. Semilinear elliptic equations 69 11. A mapping theorem in Hilbert space 73 12. The theorem of Cauchy-Kowalevsky 76 References 85 Index 88 2000 Mathematics Subject Classification. 34-02, 34A34, 34B15, 34C25, 34C27, 35A10, 35J25, 35J35, 47H09, 47H10, 49J40, 58C15. Key words and phrases. Contraction mapping principle; variational inequalities; Hilbert’s projective metric; Cauchy-Kowalweski theorem; boundary value problems; differential and integral equations. c 2009 by Robert Brooks and Klaus Schmitt. Submitted May 2, 2009. Published May 13, 2009. 1 2 R. M. BROOKS, K.SCHMITT EJDE-2009/MON. 09 Part 1. Abstract results 1. Introduction 1.1. Theme and overview. The contraction mapping principle is one of the most useful tools in the study of nonlinear equations, be they algebraic equations, integral or differential equations.
    [Show full text]
  • On Manifolds and Fixed-Point Theorems
    The birth of manifold theory Lefschetz fixed-point theorem Into the complex realm The mother of all fiexed-point theorems On manifolds and fixed-point theorems Rafael Araujo: Blue Morpho, Double Helix Valente Ram´ırez On manifolds and fixed-point theorems The birth of manifold theory Lefschetz fixed-point theorem A success story Into the complex realm Brouwer's fixed-point theorem The mother of all fiexed-point theorems The birth of manifold theory In 1895 Poincar´epublishes the seminal paper Analysis Situs { the first systematic treatment of topology. Valente Ram´ırez On manifolds and fixed-point theorems The birth of manifold theory Lefschetz fixed-point theorem A success story Into the complex realm Brouwer's fixed-point theorem The mother of all fiexed-point theorems The birth of manifold theory L.E.J. Brouwer (1881 - 1966) Dutch mathematician interested in the philosophy of the foundations of mathematics (cf. intuitionism). In 1909 meets Poincar´e,Hadamard, Borel, and is convinced of the importance of better understanding the topology of Euclidean space. This led to what we now know as Brouwer's fixed-point theorem. Valente Ram´ırez On manifolds and fixed-point theorems The birth of manifold theory Lefschetz fixed-point theorem A success story Into the complex realm Brouwer's fixed-point theorem The mother of all fiexed-point theorems The birth of manifold theory Brouwer's fixed-point theorem, 1910 Any continuous self-map n n f : B ! B n n from the closed unit ball B ⊂ R has a fixed point. Valente Ram´ırez On manifolds and fixed-point theorems The birth of manifold theory Lefschetz fixed-point theorem A success story Into the complex realm Brouwer's fixed-point theorem The mother of all fiexed-point theorems The birth of manifold theory Fundamental theorems on the topology of Euclidean space Brouwer fixed-point theorem, 1910.
    [Show full text]
  • A Converse to Banach's Fixed Point Theorem and Its CLS Completeness
    A Converse to Banach’s Fixed Point Theorem and its CLS Completeness Constantinos Daskalakis Christos Tzamos Manolis Zampetakis EECS and CSAIL, MIT EECS and CSAIL, MIT EECS and CSAIL, MIT [email protected] [email protected] [email protected] Abstract Banach’s fixed point theorem for contraction maps has been widely used to analyze the convergence of iterative methods in non-convex problems. It is a common experience, however, that iterative maps fail to be globally contracting under the natural metric in their domain, making the applicability of Banach’s theorem limited. We explore how generally we can apply Banach’s fixed point theorem to establish the convergence of iterative methods when pairing it with carefully designed metrics. Our first result is a strong converse of Banach’s theorem, showing that it is a universal analysis tool for establishing global convergence of iterative methods to unique fixed points, and for bounding their convergence rate. In other words, we show that, whenever an iterative map globally converges to a unique fixed point, there exists a metric under which the iterative map is contracting and which can be used to bound the number of iterations until convergence. We illustrate our approach in the widely used power method, providing a new way of bounding its convergence rate through contraction arguments. We next consider the computational complexity of Banach’s fixed point theorem. Making the proof of our converse theorem constructive, we show that computing a fixed point whose existence is guaranteed by Banach’s fixed point theorem is CLS-complete. We thus provide the first natural complete problem for the class CLS, which was defined in [DP11] to capture the complexity of problems such as P-matrix LCP, computing KKT-points, and finding mixed Nash equilibria in congestion and network coordination games.
    [Show full text]
  • Chapter 1 Fixed Point Theorems
    Chapter 1 Fixed point theorems One of the most important instrument to treat (nonlinear) problems with the aid of functional analytic methods is thefixed point approach. This approach is an important part of nonlinear (functional-)analysis and is deeply connected to geometric methods of topology. We consider in this chapter the famous theorems of Banach, Brouwer and Schauder. A more detailed description of thefixed point theory can be found for instance in [1, 2, 6, 8, 9] dar. 1.1 Thefixed point approach – preliminaries Consider the followingfixed point equation x=F(x) (1.1) Here,F is a mapping fromX X. We assume thatX is endowed with the metricd. − A pointz X which satisfiesz=F(z) is called afixed point of F. Fixed point theo- ∈ rems guarantee the existence→ and/or uniqueness whenF andX satisfy certain additional conditions. A simple example of a mappingF which doesn’t posses afixed point is the translation in a vector spaceX: F:X x x+x 0 X wherex 0 =θ. � �− ∈ � Many problems of applied mathematics→ may be formulated as afixed point equation or reformulated in this way: Linear equations, differential equations, zeroes of gradients, . The following examples show how the treatment of nonlinear problems may be translated intofixed point problems: Determination of zeros of nonlinear functionsg:R R: • − g(x) =0 → There are different possibilities to translate this equation into afixed point problem: F(x) :=x−g(x) simplest method F(x) :=x−ωg(x) linear relaxation with relaxation parameterω>0 −1 F(x) :=x−(g �(x)) g(x) Newton method 1 Consider the determination of a zeroz of a functionf:R n R n .
    [Show full text]
  • Contraction Mapping Principle
    Math 346 Lecture #7 7.1 Contraction Mapping Principle Definition 7.1.1. For a nonempty set X and a function f : X ! X, a pointx ¯ 2 X is called a fixed point of f if f(¯x) =x ¯. Recall the One-Dimensional Brouwer Fixed Point Theorem: if f : [0; 1] ! [0; 1] is con- tinuous, then there existsx ¯ 2 [0; 1] such that f(¯x) =x ¯, i.e., f has a fixed point, although it may have more than one fixed point. There are other kinds of continuous functions that have fixed points. Definition 7.1.3. Let (X; k · k) be a normed linear space, and D a nonempty subset of X. A function f : D ! D is called a contraction mapping if there exists 0 ≤ k < 1 such that for all x; y 2 D there holds kf(x) − f(y)k ≤ kkx − yk: Remark 7.1.4. A contraction mapping f : D ! D is Lipschitz continuous on D with constant k, and hence continuous on D. Example 7.1.6. For µ 2 [0; 1] define T : [0; 1] ! [0; 1] by T (x) = 4µx(1 − x): That the codomain of T is correct for each µ 2 [0; 1] follows from the unique maximum of T occurring at x = 1=2 when µ > 0, so that the maximum value of T is 4µ(1=4) = µ. The function T , known as the logistic map, is an iterative model in population dynamics, i.e., starting with a population percentage of x0, the next population percentage is x1 = 2 T (x0), the next is x2 = T (x1) = T (x0), etc.
    [Show full text]