Cryptography Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bruce Schneier 2
Committee on Energy and Commerce U.S. House of Representatives Witness Disclosure Requirement - "Truth in Testimony" Required by House Rule XI, Clause 2(g)(5) 1. Your Name: Bruce Schneier 2. Your Title: none 3. The Entity(ies) You are Representing: none 4. Are you testifying on behalf of the Federal, or a State or local Yes No government entity? X 5. Please list any Federal grants or contracts, or contracts or payments originating with a foreign government, that you or the entity(ies) you represent have received on or after January 1, 2015. Only grants, contracts, or payments related to the subject matter of the hearing must be listed. 6. Please attach your curriculum vitae to your completed disclosure form. Signatur Date: 31 October 2017 Bruce Schneier Background Bruce Schneier is an internationally renowned security technologist, called a security guru by the Economist. He is the author of 14 books—including the New York Times best-seller Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World—as well as hundreds of articles, essays, and academic papers. His influential newsletter Crypto-Gram and blog Schneier on Security are read by over 250,000 people. Schneier is a fellow at the Berkman Klein Center for Internet and Society at Harvard University, a Lecturer in Public Policy at the Harvard Kennedy School, a board member of the Electronic Frontier Foundation and the Tor Project, and an advisory board member of EPIC and VerifiedVoting.org. He is also a special advisor to IBM Security and the Chief Technology Officer of IBM Resilient. -
Declaration of Bruce Schneier
Case 1:17-cv-02016-RC Document 10-4 Filed 10/11/17 Page 1 of 60 UNITED STATES DISTRICT COURT FOR THE DISTRICT OF COLUMBIA ) UNITED TO PROTECT DEMOCRACY et al. ) ) Plaintiffs, ) v. ) Civil No. 17-02016 (RC) ) ) PRESIDENTIAL ADVISORY COMMISSION ) ON ELECTION INTEGRITY et al. ) ) ) Defendants. ) ) DECLARATION OF BRUCE SCHNEIER Laurence M. Schwartztol Danielle Conley (D.C. Bar #503345) (Pro hac vice pending) Lynn Eisenberg (D.C. Bar #1017511) Justin Florence (D.C. Bar #988953) Jason Hirsch ( Pro hac vice forthcoming) THE PROTECT DEMOCRACY PROJECT Michael Posada (Pro hac vice pending) 10 Ware Street WILMER CUTLER PICKERING Cambridge, MA 02138 HALE & DORR LLP (202) 856-9191 1875 Pennsylvania Avenue NW Washington, D.C. 20006 (202) 663 -6000 Case 1:17-cv-02016-RC Document 10-4 Filed 10/11/17 Page 2 of 60 DECLARATION OF BRUCE SCHNEIER I, Bruce Schneier, declare as follows: 1. I am a security technologist with expertise in how complex data systems can be secured against, or vulnerable to, hacking or other security breaches. 2. I have over 30 years of experience studying these issues as a scholar, engineer, consultant, writer, and public commentator. 3. I currently serve as Chief Technology Officer to IBM Resilient in Cambridge, MA. I am also currently a Lecturer at the John F. Kennedy School of Government at Harvard University, a Research Fellow in the Science, Technology, and Public Policy program at the Belfer Center for Science and International Affairs at the Kennedy School, and a Fellow in the Berkman Klein Center for Internet and Society at Harvard University. -
Learning from the Failure of Audio Compact Disc Protection Mark H
Santa Clara High Technology Law Journal Volume 23 | Issue 4 Article 2 2007 Technical Protection Measures for Digital Audio and Video: Learning from the Failure of Audio Compact Disc Protection Mark H. Lyon Follow this and additional works at: http://digitalcommons.law.scu.edu/chtlj Part of the Law Commons Recommended Citation Mark H. Lyon, Technical Protection Measures for Digital Audio and Video: Learning from the Failure of Audio Compact Disc Protection, 23 Santa Clara High Tech. L.J. 643 (2006). Available at: http://digitalcommons.law.scu.edu/chtlj/vol23/iss4/2 This Symposium is brought to you for free and open access by the Journals at Santa Clara Law Digital Commons. It has been accepted for inclusion in Santa Clara High Technology Law Journal by an authorized administrator of Santa Clara Law Digital Commons. For more information, please contact [email protected]. TECHNICAL PROTECTION MEASURES FOR DIGITAL AUDIO AND VIDEO: LEARNING FROM THE FAILURE OF AUDIO COMPACT DISC PROTECTION t Mark H.Lyon Abstract As consumers upgrade their computers, stereos and televisions they are replacing analog technologies with digital ones. These new technologies store information in a form that does not noticeably degrade as it is duplicated and is not bound to a particularrecording medium. As the Internet bandwidth availableto the average computer user has increased,has become highly efficient to transmit and share such data. Fearing enormous financial losses from widespread piracy, content providers sought methods to protect their content via technicalprotection measures ("TPMs'). Section I of this article provides a brief overview of technical protection measures. Sections 11 and III review various forms of technicalprotection measures that content providers have attempted to employ in connection with audio compact discs. -
A Guideline on Pseudorandom Number Generation (PRNG) in the Iot
If you cite this paper, please use the ACM CSUR reference: P. Kietzmann, T. C. Schmidt, M. Wählisch. 2021. A Guideline on Pseudorandom Number Generation (PRNG) in the IoT. ACM Comput. Surv. 54, 6, Article 112 (July 2021), 38 pages. https://dl.acm.org/doi/10.1145/3453159 112 A Guideline on Pseudorandom Number Generation (PRNG) in the IoT PETER KIETZMANN and THOMAS C. SCHMIDT, HAW Hamburg, Germany MATTHIAS WÄHLISCH, Freie Universität Berlin, Germany Random numbers are an essential input to many functions on the Internet of Things (IoT). Common use cases of randomness range from low-level packet transmission to advanced algorithms of artificial intelligence as well as security and trust, which heavily rely on unpredictable random sources. In the constrained IoT, though, unpredictable random sources are a challenging desire due to limited resources, deterministic real-time operations, and frequent lack of a user interface. In this paper, we revisit the generation of randomness from the perspective of an IoT operating system (OS) that needs to support general purpose or crypto-secure random numbers. We analyse the potential attack surface, derive common requirements, and discuss the potentials and shortcomings of current IoT OSs. A systematic evaluation of current IoT hardware components and popular software generators based on well-established test suits and on experiments for measuring performance give rise to a set of clear recommendations on how to build such a random subsystem and which generators to use. CCS Concepts: • Computer systems organization → Embedded systems; • Mathematics of computing → Random number generation; • Software and its engineering → Operating systems; Additional Key Words and Phrases: Internet of Things, hardware random generator, cryptographically secure PRNG, physically unclonable function, statistical testing, performance evaluation, survey 1 INTRODUCTION Random numbers are essential in computer systems to enfold versatility and enable security. -
Kobe University Repository : Thesis
Kobe University Repository : Thesis 学位論文題目 Integral Cryptanalysis against Symmetric-Key Cryptosystems(共通鍵 Title 暗号に対するインテグラル攻撃) 氏名 Todo, Yosuke Author 専攻分野 博士(工学) Degree 学位授与の日付 2017-03-25 Date of Degree 公開日 2019-03-25 Date of Publication 資源タイプ Thesis or Dissertation / 学位論文 Resource Type 報告番号 甲第6925号 Report Number 権利 Rights JaLCDOI URL http://www.lib.kobe-u.ac.jp/handle_kernel/D1006925 ※当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。 PDF issue: 2019-04-18 Doctoral Thesis Integral Cryptanalysis against Symmetric-Key Cryptosystems q通u暗号k対するインテグラル;撃 January 2017 Graduate School of Engineering, Kobe University Yosuke Todo Acknowledgment I would like to thank everyone who contributed to this thesis. First of all, I would like to express my sincere gratitude to my superior Prof. Masakatu Morii for introducing me to cryptology as my research topic. His guidance throughout my research helps me to establish the basis of my career in this field. I also would like to thank the judging committee members, Prof. Hiromasa Takeno, Prof. Chikara Ohta, and Associate Prof. Yoshiaki Shiraishi for reviewing this manuscript and giving me valuable feedbacks. Moreover, I would like to thank Associate Prof. Yoshiaki Shiraishi and Assistant Prof. Yasuhiro Takano for giving me helpful advice and supporting my research in Kobe University. I would like to thank Prof. Hidenori Kuwakado and Associate Prof. Minoru Kuribayashi for giving me helpful advice and supporting my research when I was bachelor and master student in Kobe University. Moreover, I would like to thank Junior Associate Prof. Toshihiro Ohigashi. I have learned much from him when I start to tackle cryptology as my research topic. -
Zero-Correlation Attacks on Tweakable Block Ciphers with Linear Tweakey Expansion
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/204511 Please be advised that this information was generated on 2021-09-24 and may be subject to change. Zero-Correlation Attacks on Tweakable Block Ciphers with Linear Tweakey Expansion Ralph Ankele1,4, Christoph Dobraunig2,3, Jian Guo4, Eran Lambooij5, Gregor Leander6 and Yosuke Todo7 1 Royal Holloway University of London, UK 2 Graz University of Technology, Austria 3 Digital Security Group, Radboud University, Nijmegen, The Netherlands 4 Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 5 University of Haifa, Israel 6 Ruhr-Universität Bochum, Germany 7 NTT Secure Platform Laboratories, Japan [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract. The design and analysis of dedicated tweakable block ciphers is a quite recent and very active research field that provides an ongoing stream of new insights. For instance, results of Kranz, Leander, and Wiemer from FSE 2017 show that the addition of a tweak using a linear tweak schedule does not introduce new linear characteristics. In this paper, we consider – to the best of our knowledge – for the first time the effect of the tweak on zero-correlation linear cryptanalysis for ciphers that have a linear tweak schedule. It turns out that the tweak can often be used to get zero-correlation linear hulls covering more rounds compared to just searching zero-correlation linear hulls on the data-path of a cipher. -
Veracrypt.Codeplex.Com
VVEERRAACCRRYYPPTT F R E E O P E N - S O U R C E O N - T H E - F L Y E N C R Y P T I O N USER’S GUIDE veracrypt.codeplex.com Version Information VeraCrypt User’s Guide, version 1.0e Released by IDRIX on Novembre 30, 2014 Legal Notices THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, OR STATUTORY. THE ENTIRE RISK AS TO THE QUALITY, CORRECTNESS, ACCURACY, OR COMPLETENESS OF THE CONTENT OF THIS DOCUMENT IS WITH YOU. THE CONTENT OF THIS DOCUMENT MAY BE INACCURATE, INCORRECT, INVALID, INCOMPLETE AND/OR MISLEADING. IN NO EVENT WILL ANY AUTHOR OF THE SOFTWARE OR DOCUMENTATION, OR ANY APPLICABLE COPYRIGHT OWNER, OR ANY OTHER PARTY WHO MAY COPY AND/OR (RE)DISTRIBUTE THIS SOFTWARE OR DOCUMENTATION, BE LIABLE TO YOU OR TO ANY OTHER PARTY FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, ANY DIRECT, INDIRECT, GENERAL, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, CORRUPTION OR LOSS OF DATA, ANY LOSSES SUSTAINED BY YOU OR THIRD PARTIES, A FAILURE OF THIS SOFTWARE TO OPERATE WITH ANY OTHER PRODUCT, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR BUSINESS INTERRUPTION), WHETHER IN CONTRACT, STRICT LIABILITY, TORT (INCLUDING, BUT NOT LIMITED TO, NEGLIGENCE) OR OTHERWISE, ARISING OUT OF THE USE, COPYING, MODIFICATION, OR (RE)DISTRIBUTION OF THIS SOFTWARE OR DOCUMENTATION (OR A PORTION THEREOF), OR INABILITY TO USE THIS SOFTWARE OR DOCUMENTATION, EVEN IF SUCH DAMAGES (OR THE POSSIBILITY OF SUCH DAMAGES) ARE/WERE PREDICTABLE OR KNOWN TO ANY (CO)AUTHOR, INTELLECTUAL-PROPERTY OWNER, OR ANY OTHER PARTY. -
The Skein Hash Function Family
The Skein Hash Function Family Version 1.3 | 1 Oct 2010 Niels Ferguson Microsoft Corp., [email protected] Stefan Lucks Bauhaus-Universit¨atWeimar, [email protected] Bruce Schneier BT Group plc, [email protected] Doug Whiting Hifn, Inc. [email protected] Mihir Bellare University of California San Diego, [email protected] Tadayoshi Kohno University of Washington, [email protected] Jon Callas PGP Corp., [email protected] Jesse Walker Intel Corp., [email protected] Executive Summary Skein is a new family of cryptographic hash functions. Its design combines speed, security, simplic- ity, and a great deal of flexibility in a modular package that is easy to analyze. Skein is fast. Skein-512|our primary proposal|hashes data at 6.1 clock cycles per byte on a 64-bit CPU. This means that on a 3.1 GHz x64 Core 2 Duo CPU, Skein hashes data at 500 MBytes/second per core|almost twice as fast as SHA-512 and three times faster than SHA-256. An optional hash- tree mode speeds up parallelizable implementations even more. Skein is fast for short messages, too; Skein-512 hashes short messages in about 1000 clock cycles. Skein is secure. Its conservative design is based on the Threefish block cipher. The current best attack on the tweaked Threefish-512 is on 35 of 72 rounds, for a safety factor of just over 2.0. For comparison, at a similar stage in the standardization process, the AES encryption algorithm had an attack on 6 of 10 rounds, for a safety factor of only 1.7. -
The Linux Pseudorandom Number Generator Revisited
The Linux Pseudorandom Number Generator Revisited Patrick Lacharme ∗ Andrea Röck † Vincent Strubel ‡ Marion Videau § Abstract The Linux pseudorandom number generator (PRNG) is a PRNG with entropy inputs which is widely used in many security related applications and protocols. This PRNG is written as an open source code which is subject to regular changes. It was last analyzed in the work of Gutterman et al. in 2006 [GPR06] but since then no new analysis has been made available, while in the meantime several changes have been applied to the code, among others, to counter the attacks presented in [GPR06]. Our work describes the Linux PRNG of kernel versions 2.6.30.7 and upwards. We detail the PRNG architecture in the Linux system and provide its first accurate mathematical description and a precise analysis of the building blocks, including entropy estimation and extraction. Subsequently, we give a security analysis including the feasibility of cryptographic attacks and an empirical test of the entropy estimator. Finally, we underline some important changes to the previous versions and their consequences. 1 Introduction The security of many protocols is based on the impossibility for an attacker to guess ran- dom data, such as session keys for cryptosystems or nonces for cryptographic protocols. The frequency and the amount of required random data can differ greatly with the application. Therefore, random data generation should take into account the fact that the user can request either high quality random data or a great amount of pseudorandom data. There are several types of PRNGs: non-cryptographic deterministic PRNGs which should not be used for security applications, cryptographically secure PRNGs (CSPRNGs) which are deterministic algorithms with outputs that are unpredictable to an outsider without knowledge of the generator’s in- ternal states and PRNGs with entropy inputs (see e.g. -
Secure Block Ciphers - Cryptanalysis and Design
Downloaded from orbit.dtu.dk on: Oct 03, 2021 Secure Block Ciphers - Cryptanalysis and Design Tiessen, Tyge Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Tiessen, T. (2017). Secure Block Ciphers - Cryptanalysis and Design. Technical University of Denmark. DTU Compute PHD-2016 No. 412 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Secure Block Ciphers Cryptanalysis and Design Tyge Tiessen Ph.D. Thesis April 2016 Document compiled on April 25, 2016. Supervisor: Christian Rechberger Co-supervisor: Lars R. Knudsen Technical University of Denmark Department of Applied Mathematics and Computer Science ISSN: 0909-3192 Serial no.: PHD-2016-412 Abstract The rapid evolution of computational devices and the widespread adoption of digital communication have deeply transformed the way we conduct both business and everyday life and they continue to do so.