An Exploratory Study of the Pull-Based Software Development Model

Total Page:16

File Type:pdf, Size:1020Kb

An Exploratory Study of the Pull-Based Software Development Model An Exploratory Study of the Pull-based Software Development Model Georgios Gousios Martin Pinzger Arie van Deursen Delft University of Technology University of Klagenfurt Delft University of Technology Delft, The Netherlands Klagenfurt, Austria Delft, The Netherlands [email protected] [email protected] [email protected] ABSTRACT allow any user to clone any public repository. The clone creates The advent of distributed version control systems has led to the a public project that belongs to the user that cloned it, so the user development of a new paradigm for distributed software develop- can modify the repository without being part of the development ment; instead of pushing changes to a central repository, devel- team. Furthermore, such sites automate the selective contribution opers pull them from other repositories and merge them locally. of commits from the clone to the source through pull requests. Various code hosting sites, notably Github, have tapped on the op- Pull requests as a distributed development model in general, and portunity to facilitate pull-based development by offering workflow as implemented by Github in particular, form a new method for col- support tools, such as code reviewing systems and integrated issue laborating on distributed software development. The novelty lays in trackers. In this work, we explore how pull-based software devel- the decoupling of the development effort from the decision to incor- porate the results of the development in the code base. By separat- opment works, first on the GHTorrent corpus and then on a care- fully selected sample of 291 projects. We find that the pull request ing the concerns of building artifacts and integrating changes, work model offers fast turnaround, increased opportunities for commu- is cleanly distributed between a contributor team that submits, often nity engagement and decreased time to incorporate contributions. occasional, changes to be considered for merging and a core team We show that a relatively small number of factors affect both the that oversees the merge process, providing feedback, conducting decision to merge a pull request and the time to process it. We also tests, requesting changes, and finally accepting the contributions. examine the reasons for pull request rejection and find that techni- Previous work has identified the processes of collaboration in cal ones are only a small minority. distributed development through patch submission and acceptance [23, 5, 32]. There are many similarities to the way pull requests work; for example, similar work team structures emerge, since Categories and Subject Descriptors typically pull requests go through an assessment process. What D.2.7 [Software Engineering]: Distribution, Maintenance, and pull requests offer in addition is process automation and central- Enhancement—Version control; D.2.9 [Software Engineering]: Man- ization of information. With pull requests, the code does not have agement—Programming teams to leave the revision control system, and therefore it can be ver- sioned across repositories, while authorship information is effort- General Terms lessly maintained. Communication about the change is context- specific, being rooted on a single pull request. Moreover, the re- Management view mechanism that Github incorporates has the additional effect of improving awareness [9]; core developers can access in an ef- Keywords ficient way all information that relates to a pull request and solicit pull-based development, pull request, distributed software develop- opinions of the community (“crowd-source”) about the merging de- ment, empirical software engineering cision. A distributed development workflow is effective if pull requests 1. INTRODUCTION are eventually accepted, and it is efficient if the time this takes is as short as possible. Advancing our insight in the effectiveness and Pull-based development is an emerging paradigm for distributed efficiency of pull request handling is of direct interest to contribu- software development. As more developers appreciate isolated de- tors and developers alike. The goal of this work is to obtain a deep velopment and branching [7], more projects, both closed source understanding of pull request usage and to analyze the factors that and, especially, open source, are being migrated to code hosting affect the efficiency of the pull-based software development model. sites such as Github and Bitbucket with support for pull-based de- Specifically, the questions we are trying to answer are: velopment [2]. A unique characteristic of such sites is that they RQ1 How popular is the pull based development model? RQ2 What are the lifecycle characteristics of pull requests? Permission to make digital or hard copies of all or part of this work for RQ3 What factors affect the decision and the time required to personal or classroom use is granted without fee provided that copies are merge a pull request? not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to RQ4 Why are some pull requests not merged? republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Our study is based on data from the Github collaborative devel- Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00. opment forge, as made available through our GHTorrent project [16]. Using it, we first explore the use of almost 2 million pull requests across all projects in Github. We then examine 291 carefully se- lected Ruby, Python, Java and Scala projects (in total, 166,884 pull requests), and identify, using qualitative and quantitative analysis, the factors that affect pull request lifetime, merging and rejection. 2. BACKGROUND Since their appearance in 2001, distributed version control sys- DVCS tems ( ), notably Git [8], have revolutionized the way dis- tributed software development is carried out. Driven by pragmatic needs, most DVCSs were designed from scratch to work as ad- vanced patch management systems, rather than versioned file sys- tems, the then dominant version control paradigm. In most DVCSs, a file is an ordered set of changes, the serial application of which leads to the current state. Changes are stamped by globally unique identifiers, which can be used to track the commit’s content across Figure 1: The pull request process. repositories. When integrating changes, the change sets can origi- nate from a local filesystem or a remote host; tools facilitate the ac- quisition and application of change sets on a local mirror. The dis- from. Github automatically discovers the commits to be merged tributed nature of DVCSs enables a pull-based development model, and presents them in the pull request. By default, pull requests are where changes are offered to a project repository through a network submitted to the base (“upstream” in Git parlance) repository for of project forks; it is up to the repository owner to accept or reject inspection. The inspection is either a code review of the commits the incoming pull requests. submitted with the pull request or a discussion about the features The purpose of distributed development is to enable a poten- introduced by the pull request. Any Github user can participate to tial contributor to submit a set of changes to a software project both types of inspection. As a result of the inspection, pull requests managed by a core team. The development models afforded by can be updated with new commits or be closed as redundant, unin- DVCSs are a superset of those in centralized version control envi- teresting or duplicate. In case of an update, the contributor creates ronments [31, 6]. With respect to receiving and processing external new commits in the forked repository, while Github automatically contributions, the following strategies can be employed with DVCs: updates the displayed commits. The code inspection can then be Shared resporitory. The core team shares the project’s repos- repeated on the refreshed commits. itory, with read and write permissions, with the contributors. To When the inspection process finishes and the pull requests are work, contributors clone it locally, modify its contents, potentially deemed satisfactory, the pull request can be merged. A pull request introducing new branches, and push their changes back to the cen- can only be merged by core team members. The versatility of Git tral one. To cope with multiple versions and multiple developers, enables pull requests to be merged in three ways, presented below larger projects usually adopt a branching model, i.e., an organized sorted by the amount of preservation of the original source code way to inspect and test contributions before those are merged to the properties: main development branch [7]. 1. Through Github facilities. Github can automatically verify Pull requests. The project’s main repository is not shared among whether a pull request can be merged without conflicts to the base potential contributors; instead, contributors fork (clone) the reposi- repository. When a merge is requested, Github will automatically tory and make their changes independent of each other. When a set apply the commits in the pull request and record the merge event. of changes is ready to be submitted to the main repository, they cre- All authorship and history information is maintained in the merged ate a pull request, which specifies a local branch to be merged with commits. a branch in the main repository. A member of the
Recommended publications
  • Developer Survey
    Developer Survey Questions requiring a response are in r ed . Questions in which a response is NOT required are in blue. This survey is a critical element of the developers workshop. We are using it to capture nuts and bolts information about codes within the community so that we can assess the landscape before the workshop and use this information to drive the discussions. Please collaborate to provide only one submission per code and submit your response using the online survey: h ttps://ucdavis.co1.qualtrics.com/jfe/form/SV_57wtv4gpuaowTsh Basic Information Code identification 1. What is the name of the code? [small text box] 2. Who are the primary authors/maintainers? [medium text box] 3. URL of webpage for the code (if different than the version control repository) [small text box] 4. URL of version control repository (if public) [small text box] Software 1. Which license(s) do you use? Select all that apply. a. Apache license b. BSD license c. GNU General Public License d. GNU Lesser General Public License e. MIT license f. Mozilla Public License g. Common Development and Distribution License h. Eclipse Public License i. Other. Please specify [small text box] j. No license 2. What programming language(s) is your code currently written in? Select all that apply a. Fortran 77 b. Fortran 90 or later c. C d. C++ e. Go f. Python g. Julia h. Matlab i. Other. Please specify. [small text box] 3. List the primary (high-level) code dependencies (e.g., PETSc, deal.ii, FEniCS) [medium text box] 4. List any additional (low-level) code dependencies (e.g., MPI, NetCDF, HDF5) [medium text box] 5.
    [Show full text]
  • Updating Systems and Adding Software in Oracle® Solaris 11.4
    Updating Systems and Adding Software ® in Oracle Solaris 11.4 Part No: E60979 November 2020 Updating Systems and Adding Software in Oracle Solaris 11.4 Part No: E60979 Copyright © 2007, 2020, Oracle and/or its affiliates. License Restrictions Warranty/Consequential Damages Disclaimer This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. Warranty Disclaimer The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. Restricted Rights Notice If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
    [Show full text]
  • Project Report
    Project Report An Extension of CodeFeedr Team 1Up Project Report An Extension of CodeFeedr by Roald van der Heijden, Matthijs van Wijngaarden, Wouter Zonneveld in order to obtain the degree of Bachelor of Science in Computer Science at the Delft University of Technology, to be defended publicly on the 5th of February 2020, 10:30 Project duration: November 11, 2019 – January 31, 2020 Thesis committee: Dr. G. Gousios, Client, TU Delft Dr. A. Katsifodimos, Supervisor, TU Delft Dr. H. Wang, Bachelor Project Coordinator, TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Contents 1 Introduction 4 2 CodeFeedr 5 2.1 Overview.........................................5 2.2 Architecture........................................5 2.3 Dependencies.......................................6 3 Research Report 7 3.1 Overview.........................................7 3.2 Problem Description...................................7 3.3 Design Goals.......................................8 3.4 Requirement Analysis...................................9 3.5 Development Methodology................................ 10 3.6 Related Work....................................... 11 3.7 Design Choices...................................... 12 4 Software Architecture 15 4.1 Design Patterns...................................... 15 4.2 Plugins.......................................... 15 4.3 SQL REPL......................................... 17 5 Implementation 18 5.1 Plugins.......................................... 18 5.2 SQL REPL........................................
    [Show full text]
  • Diplomat: Using Delegations to Protect Community Repositories
    Diplomat: Using Delegations to Protect Community Repositories Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz, and Justin Cappos, New York University https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/kuppusamy This paper is included in the Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16). March 16–18, 2016 • Santa Clara, CA, USA ISBN 978-1-931971-29-4 Open access to the Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) is sponsored by USENIX. Diplomat: Using Delegations to Protect Community Repositories Trishank Karthik Kuppusamy Santiago Torres-Arias Vladimir Diaz Justin Cappos Tandon School of Engineering, New York University Abstract software. Major repositories run by Adobe, Apache, Debian, Fedora, FreeBSD, Gentoo, GitHub, GNU Sa- Community repositories, such as Docker Hub, PyPI, vannah, Linux, Microsoft, npm, Opera, PHP, RedHat, and RubyGems, are bustling marketplaces that distribute RubyGems, SourceForge, and WordPress repositories software. Even though these repositories use common have all been compromised at least once [4,5,7,27,28,30, software signing techniques (e.g., GPG and TLS), at- 31,35,36,39–41,48,59,61,62,67,70,79,80,82,86,87,90]. tackers can still publish malicious packages after a server For example, a compromised SourceForge repository compromise. This is mainly because a community repos- mirror located in Korea distributed a malicious ver- itory must have immediate access to signing keys in or- sion of phpMyAdmin, a popular database administration der to certify the large number of new projects that are tool [79]. The modified version allowed attackers to gain registered each day.
    [Show full text]
  • Designdocument < Hellasgrid/Egiumdrepository
    Table of Contents EGI Repository Design Document...................................................................................................................1 Executive Summary................................................................................................................................1 Glossary..................................................................................................................................................1 Table of Contents....................................................................................................................................1 Introduction and Requirements and Objectives......................................................................................1 Operations on the repository............................................................................................................2 Contents of the repository................................................................................................................2 Supported Projects............................................................................................................................2 Users and User's Roles in the Repository...............................................................................................2 Repository Contents for End Users..................................................................................................3 Repository Administrators...............................................................................................................3
    [Show full text]
  • Kace Asset Management Guide
    Kace Asset Management Guide Metaphorical Lucio always evangelising his synarchy if Moishe is capitular or writhe sufferably. Hymenopterous Sibyl always politicks his decimators if Aub is alabastrine or site photogenically. Which Rodolph breezed so fined that Swen inculcated her speculator? With kace customers run quest kace systems management, united states merchant marine academy. Maintenance costs have been annualized over several period on three years to extract their harvest over time. Comparing suites from sap helps clients bring their asset management solutions provider hardinge inc, kace asset management are stored in lifecycle management feature relies on active assets. Learn how asset management leaders are ensuring a reliable and sustainable supply chain, Microsoft and Symantec all require the installation of an agent to perform OS and application discovery tasks, and Symantec problems. You need to unselect a conflict with. Using Custom fields Within software Asset where in Dell KACE, etc. Are you sure you as to delete your attachment? All four evaluated solutions include: antioch university as well as it opens a solution helps track down systems management? An integrated mechanism to report problems and service requests enables prompt response to end users and reduces administrative roadblocks. Product was easy to use. To analyze the opportunities in the market for stakeholders by identifying the high growth segments. Best Practices in Lifecycle Management: Comparing Suites from Dell, and complete security. Although Microsoft does not natively include vulnerability scans, this in proper way detracts from our investment in supporting operating systems regardless of equipment brand. Past performance is just poor indicator of future performance.
    [Show full text]
  • Possible Directions for Improving Dependency Versioning in R by Jeroen Ooms
    CONTRIBUTED RESEARCH ARTICLES 197 Possible Directions for Improving Dependency Versioning in R by Jeroen Ooms Abstract One of the most powerful features of R is its infrastructure for contributed code. The built-in package manager and complementary repositories provide a great system for development and exchange of code, and have played an important role in the growth of the platform towards the de-facto standard in statistical computing that it is today. However, the number of packages on CRAN and other repositories has increased beyond what might have been foreseen, and is revealing some limitations of the current design. One such problem is the general lack of dependency versioning in the infrastructure. This paper explores this problem in greater detail, and suggests approaches taken by other open source communities that might work for R as well. Three use cases are defined that exemplify the issue, and illustrate how improving this aspect of package management could increase reliability while supporting further growth of the R community. Package management in R One of the most powerful features of R is its infrastructure for contributed code (Fox, 2009). The base R software suite that is released several times per year ships with the base and recommended packages and provides a solid foundation for statistical computing. However, most R users will quickly resort to the package manager and install packages contributed by other users. By default, these packages are installed from the “Comprehensive R Archive Network” (CRAN), featuring over 4300 contributed packages as of 2013. In addition, other repositories like BioConductor (Gentleman et al., 2004) and Github (Dabbish et al., 2012) are hosting a respectable number of packages as well.
    [Show full text]
  • Roles in a Networked Software Development Ecosystem: a Case Study in Github Patrick Wagstrom IBM TJ Watson Research Center Hawthorne, NY, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Technical reports Computer Science and Engineering, Department of 2012 Roles in a Networked Software Development Ecosystem: A Case Study in GitHub Patrick Wagstrom IBM TJ Watson Research Center Hawthorne, NY, [email protected] Corey Jergensen University of Nebraska-Lincoln, [email protected] Anita Sarma University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports Wagstrom, Patrick; Jergensen, Corey; and Sarma, Anita, "Roles in a Networked Software Development Ecosystem: A Case Study in GitHub" (2012). CSE Technical reports. 149. http://digitalcommons.unl.edu/csetechreports/149 This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Roles in a Networked Software Development Ecosystem: A Case Study in GitHub Patrick Wagstrom Corey Jergensen, Anita Sarma IBM TJ Watson Research Center Computer Science and Engineering Department 19 Skyline Dr University of Nebraska, Lincoln Hawthorne, NY, USA 10532 Lincoln, NE, USA 68588 [email protected] {cjergens,asarma}@cse.unl.edu ABSTRACT tiple languages and utilizing multiple different development Open source software development has evolved beyond single frameworks and libraries, For example, development of a web projects into complex networked ecosystems of projects that application may use the JavaScript library jQuery for the user share portions of their code, social norms, and developer commu- interaction, Ruby on Rails for the backend processing, and Rack nities.
    [Show full text]
  • Working with Ubuntu Linux
    Working with Ubuntu Linux Track 2 Workshop June 2010 Pago Pago, American Samoa Assumptions You are comfortable with the following: • Core Linux concepts - Shells - Permissions - Graphical user interface (GUI) vs. command line interface (CLI) • Working on the Linux command line • Editing files in Linux (using vi, nano or other text editors) • Basics of networking Is this correct? Goal Present the “Ubuntu philosophy” and differences from other Linux distributions. Including: • Naming conventions • Release conventions (Server, Desktop and LTS) • Other flavors • The Debian way • Packaging system (how software is installed) • Meta-packages • Keeping up-to-date • Stopping and starting services Ubuntu Timeline The Debian Way Ubuntu is built from Debian repositories and uses the Debian package management system. • Debian is a very cautious and strict Linux distribution: • Minimal new versions • Extremely well-tested • No closed source software • Beta version of Debian as stable as release quality for most Linux distributions. • New versions are not released until they are ready. • Latest versions of software often not available in main branch as they are not considered stable or safe enough. • There are pluses and minuses to this approach. The Ubuntu Take on the Debian Way Potentially heretical slide … • Use the Debian software repository concept to classify software. • Use the Debian package management system. • Be more open – Ubuntu allows closed source software and drivers. • Ubuntu pushes releases out fast, but supports releases for 2 to 5 years (Unlike Fedora Core’s 18 months). • Ubuntu aiming at both the desktop and server markets. • The “Ubuntu Project” is supported by Mark Shuttleworth. • Make maintaining a current system very easy to completely automatic (much like Windows).
    [Show full text]
  • Arxiv:1710.04936V1 [Cs.SE] 13 Oct 2017 A
    Manuscript preprint submitted for publication to Empirical Software Engineering Journal An Empirical Comparison of Dependency Network Evolution in Seven Software Packaging Ecosystems Alexandre Decan · Tom Mens · Philippe Grosjean Abstract Nearly every popular programming language comes with one or more package managers. The software packages distributed by such package managers form large software ecosystems. These packaging ecosystems con- tain a large number of package releases that are updated regularly and that have many dependencies to other package releases. While packaging ecosys- tems are extremely useful for their respective communities of developers, they face challenges related to their scale, complexity, and rate of evolution. Typ- ical problems are backward incompatible package updates, and the risk of (transitively) depending on packages that have become obsolete or inactive. This manuscript uses the libraries.io dataset to carry out a quantitative empirical analysis of the similarities and differences between the evolution of package dependency networks for seven packaging ecosystems of varying sizes and ages: Cargo for Rust, CPAN for Perl, CRAN for R, npm for JavaScript, NuGet for the .NET platform, Packagist for PHP, and RubyGems for Ruby. We propose novel metrics to capture the growth, changeability, resuability and fragility of these dependency networks, and use these metrics to analyse and compare their evolution. We observe that the dependency networks tend to grow over time, both in size and in number of package updates, while a minority of packages are responsible for most of the package updates. The majority of packages depend on other packages, but only a small proportion of packages accounts for most of the reverse dependencies.
    [Show full text]
  • THE DEBIAN PACKAGE MANAGEMENT SYSTEM the Debian Package Management System (DPMS) Is the Foundation for Managing Soft- Ware on Debian and Debian-Like Systems
    Chapter 3: Managing Software 47 THE DEBIAN PACKAGE MANAGEMENT SYSTEM The Debian Package Management System (DPMS) is the foundation for managing soft- ware on Debian and Debian-like systems. As is expected of any software management system, DPMS provides for easy installation and removal of software packages. Debian packages end with the .deb extension. At the core of the DPMS is the dpkg (Debian Package) application. dpkg works in the back-end of the system, and several other command-line tools and graphical user interface (GUI) tools have been written to interact with it. Packages in Debian are fondly called “.deb” files. dpkg can directly manipulate .deb files. Various other wrapper tools have been developed to interact with dpkg, either directly or indirectly. APT APT is a highly regarded and sophisticated toolset. It is an example of a wrapper tool that interacts directly with dpkg. APT is actually a library of programming functions that are used by other middle-ground tools, like apt-get and apt-cache, to manipulate software on Debian-like systems. Several user-land applications have been developed that rely on APT. (User-land refers to non-kernel programs and tools.) Examples of such applications are synaptic, aptitude, and dselect. The user-land tools are generally more user-friendly than their command-line counterparts. APT has also been successfully ported to other operating systems. One fine difference between APT and dpkg is that APT does not directly deal with .deb packages; instead, it manages software via the locations (repositories) specified in a configuration file. This file is the sources.list file.
    [Show full text]
  • Towards Using Source Code Repositories to Identify Software Supply Chain Attacks
    Towards Using Source Code Repositories to Identify Software Supply Chain Attacks Duc-Ly Vu Ivan Pashchenko Fabio Massacci [email protected] [email protected] [email protected] University of Trento, IT University of Trento, IT University of Trento, IT Henrik Plate Antonino Sabetta [email protected] [email protected] SAP Security Research, FR SAP Security Research, FR ABSTRACT language based ecosystems such as NPM for Javascript or Increasing popularity of third-party package repositories, like PyPI for Python by either stealing package owner credentials NPM, PyPI, or RubyGems, makes them an attractive target to subvert the package releases (e.g., attack on ssh-decorate 1 for software supply chain attacks. By injecting malicious code package ) or publishing their own packages with names simi- into legitimate packages, attackers were known to gain more lar to popular ones (i.e., combosquatting and typosquatting than 100 000 downloads of compromised packages. Current attacks on PyPI packages [11]). The examples of the supply approaches for identifying malicious payloads are resource chain attacks were discovered several years ago. Since then, demanding. Therefore, they might not be applicable for the the number of cases has been steadily increasing [3, Figure 1]. on-the-fly detection of suspicious artifacts being uploaded to Given the popularity of packages coming from language the package repository. In this respect, we propose to use based ecosystems, the number of victims affected by software source code repositories (e.g., those in Github) for detecting supply chain attacks is significant. For example, in July 2019, injections into the distributed artifacts of a package.
    [Show full text]