Reported Is an Initial Attempt to Define a Minimal College Mathematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Samuel Eilenberg Assistant Professorships
Faculty of Mathematics, Informatics and Mechanics Dean, Professor Paweł Strzelecki Samuel Eilenberg Assistant Professorships Four academic positions in the group of researchers and lecturers are vailable at the Faculty of Mathematics, Informatics and Mechanics Pursuant to the Law on Higher Education and Science, the Univeristy of Warsaw invites the applications for four positions of Samuel Eilenberg Assistant Professorships. Samuel Eilenberg (1913-1998) obtained his PhD degree in Mathematics at the University of Warsaw in 1936 under the supervision of Kazimierz Kuratowski and Karol Borsuk. He spent most of his career in the USA as a professor at Columbia Univeristy. He exerted a critical influence on contemporary mathematics and theoretical computer science; he was a co- founder of modern topology, category theory, homological algebra, and automata theory. His scientific development epitomizes openness to new ideas and readiness to face demanding intellectual challenges. Terms of employment: starting date October 1, 2020; full time job, competitive salary, fixed term employment contract for 2 or 4 years (to be decided with successful applicants). The candidates will concentrate on intensive research and will have reduced teaching duties (120 teaching hours per academic year). Requirements. Successful candidates for Samuel Eilenberg Professorships should have: 1. a PhD degree in mathematics, computer science or related fields obtained in the past 5 years; 2. significant papers in mathematics or computer science, published in refereed, globally recognized journals or confer- ences; 3. teaching experience and willingness to undertake organizational activities related to teaching; 4. significant international experience (internships or post-doctoral fellowships, projects etc.). Candidates obtain extra points for: • research fellowships outside Poland within the last two years; • high pace of scientific development that is confirmed by high quality papers; a clear concept of maintaining this development is required. -
Victor L. Klee 1925–2007 Peter Gritzmann and Bernd Sturmfels
Victor L. Klee 1925–2007 Peter Gritzmann and Bernd Sturmfels ictor L. Klee passed away on August student, respectively) edited the volume Applied 17, 2007, in Lakewood, Ohio. Born in Geometry and Discrete Mathematics, which was San Francisco in 1925, he received his published by the American Mathematical Society. Ph.D. in mathematics from the Univer- For this obituary, we invited a group of former sity of Virginia in 1949. In 1953 he colleagues and mentees to contribute short pieces Vmoved to the University of Washington in Seattle, on Klee’s mathematical life. This resulted in ten where he was a faculty member for 54 years. individual spotlights, followed by some person- Klee specialized in convex sets, functional anal- al remarks by the editors. The emphasis lies on ysis, analysis of algorithms, optimization, and Klee’s work in the more recent decades of his combinatorics, writing more than 240 research rich scientific life, and hence they focus on finite- papers. He received many honors, including a dimensional convexity, discrete mathematics, and Guggenheim Fellowship; the Ford Award (1972), optimization. His bibliography, however, makes it the Allendoerfer Award (1980 and 1999), and clear that by the late 1960s he already had more the Award for Distinguished Service (1977) from than a career’s worth of papers in continuous and the Mathematical Association of America; and the infinite dimensional convexity. Humboldt Research Award (1980); as well as hon- orary doctorates from Pomona College (1965) and the Universities of Liège (1984) and Trier (1995). Louis J. Billera For collaborations with the first listed editor he received the Max Planck Research Award (1992). -
Cohomology Theory of Lie Groups and Lie Algebras
COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS BY CLAUDE CHEVALLEY AND SAMUEL EILENBERG Introduction The present paper lays no claim to deep originality. Its main purpose is to give a systematic treatment of the methods by which topological questions concerning compact Lie groups may be reduced to algebraic questions con- cerning Lie algebras^). This reduction proceeds in three steps: (1) replacing questions on homology groups by questions on differential forms. This is accomplished by de Rham's theorems(2) (which, incidentally, seem to have been conjectured by Cartan for this very purpose); (2) replacing the con- sideration of arbitrary differential forms by that of invariant differential forms: this is accomplished by using invariant integration on the group manifold; (3) replacing the consideration of invariant differential forms by that of alternating multilinear forms on the Lie algebra of the group. We study here the question not only of the topological nature of the whole group, but also of the manifolds on which the group operates. Chapter I is concerned essentially with step 2 of the list above (step 1 depending here, as in the case of the whole group, on de Rham's theorems). Besides consider- ing invariant forms, we also introduce "equivariant" forms, defined in terms of a suitable linear representation of the group; Theorem 2.2 states that, when this representation does not contain the trivial representation, equi- variant forms are of no use for topology; however, it states this negative result in the form of a positive property of equivariant forms which is of interest by itself, since it is the key to Levi's theorem (cf. -
Algebraic Topology - Wikipedia, the Free Encyclopedia Page 1 of 5
Algebraic topology - Wikipedia, the free encyclopedia Page 1 of 5 Algebraic topology From Wikipedia, the free encyclopedia Algebraic topology is a branch of mathematics which uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Contents 1 The method of algebraic invariants 2 Setting in category theory 3 Results on homology 4 Applications of algebraic topology 5 Notable algebraic topologists 6 Important theorems in algebraic topology 7 See also 8 Notes 9 References 10 Further reading The method of algebraic invariants An older name for the subject was combinatorial topology , implying an emphasis on how a space X was constructed from simpler ones (the modern standard tool for such construction is the CW-complex ). The basic method now applied in algebraic topology is to investigate spaces via algebraic invariants by mapping them, for example, to groups which have a great deal of manageable structure in a way that respects the relation of homeomorphism (or more general homotopy) of spaces. This allows one to recast statements about topological spaces into statements about groups, which are often easier to prove. Two major ways in which this can be done are through fundamental groups, or more generally homotopy theory, and through homology and cohomology groups. -
Interview with Henri Cartan, Volume 46, Number 7
fea-cartan.qxp 6/8/99 4:50 PM Page 782 Interview with Henri Cartan The following interview was conducted on March 19–20, 1999, in Paris by Notices senior writer and deputy editor Allyn Jackson. Biographical Sketch in 1975. Cartan is a member of the Académie des Henri Cartan is one of Sciences of Paris and of twelve other academies in the first-rank mathe- Europe, the United States, and Japan. He has re- maticians of the twen- ceived honorary doc- tieth century. He has torates from several had a lasting impact universities, and also through his research, the Wolf Prize in which spans a wide va- Mathematics in 1980. riety of areas, as well Early Years as through his teach- ing, his students, and Notices: Let’s start at the famed Séminaire the beginning of your Cartan. He is one of the life. What are your founding members of earliest memories of Bourbaki. His book Ho- mathematical inter- mological Algebra, writ- est? ten with Samuel Eilen- Cartan: I have al- berg and first published ways been interested Henri Cartan’s father, Élie Photograph by Sophie Caretta. in 1956, is still in print in mathematics. But Cartan. Henri Cartan, 1996. and remains a standard I don’t think it was reference. because my father The son of Élie Cartan, who is considered to be was a mathematician. I had no doubt that I could the founder of modern differential geometry, Henri become a mathematician. I had many teachers, Cartan was born on July 8, 1904, in Nancy, France. good or not so good. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
Majors in Mathematics and Chem Istry
Vita of Victor Klee Personal: Born in San Francisco, 1925 Education: B.A. (with high honors), Pomona College, 1945 (majors in Mathematics and Chem istry) Ph.D. (Mathematics), University of Virginia, 1949 Honorary Degrees: D.Sc., Universitat Trier, 1995 D.Sc., Universite de Liege, 1984 D.Sc., Pomona College, 1965 Awards: American Academy of Arts and Sciences " . Fellow, 1997 American Association for the Advancement of Science Fellow, 1976 Mathematical Association of America: Annual Award for Distinguished Service to Mathematics, 1977 C.B. Allendoerfer Award, 1980, 1999 L.R. Ford Award, 1972 Max-Planck-Gesellschaft: Max-Planck-Forschungspreis, 1992 Alexander von Humboldt Stiftung: Preistrager, 1980-81 Pomona College: David Prescott Barrows Award for Distinguished Achievement, 1988 Reed College: Vollum Award for Distinguished Accomplishment in Science and Technology, 1982 University of Virginia: President's and Visitor's Research Prize, 1952 1 "'lNf\""". 4 sZUA=eJUPLJ 2 Full-Time Employment: University of Washington: Professor of Mathematics, 1957-98, then Professor Emeritus; \ Associate Professor, 1954-57; Assistant Professor, 1953-54; Adjunct Professor of Computer Science, 1974-presentj Professor or Adjunct Professor of Applied Mathematics, 1976-84; University of Western Australia: Visiting Professor, 1979. University of Victoria: Visiting Professor, 1975. T.J. Watson Research Center, IBM: Full-Time Consultant, 1972. University of Colorado: Visiting Professor, 1971. University of California, Los Angeles: Visiting Associate Professor, 1955-56. University of Virginia: Assistant Professor, 1949-53; Instructor, 1947-48. Fellowships: Fulbright Research Scholar, University of Trier, 1992 Senior Fellow, Institute for Mathematics and its Applications, Minneapolis, 1987. Mathematical Sciences Research Institute, Berkeley, 1985-86. Guggenheim Fellow, University of Erlangen-Nurnberg, 1980-8l. -
Council Congratulates Exxon Education Foundation
from.qxp 4/27/98 3:17 PM Page 1315 From the AMS ics. The Exxon Education Foundation funds programs in mathematics education, elementary and secondary school improvement, undergraduate general education, and un- dergraduate developmental education. —Timothy Goggins, AMS Development Officer AMS Task Force Receives Two Grants The AMS recently received two new grants in support of its Task Force on Excellence in Mathematical Scholarship. The Task Force is carrying out a program of focus groups, site visits, and information gathering aimed at developing (left to right) Edward Ahnert, president of the Exxon ways for mathematical sciences departments in doctoral Education Foundation, AMS President Cathleen institutions to work more effectively. With an initial grant Morawetz, and Robert Witte, senior program officer for of $50,000 from the Exxon Education Foundation, the Task Exxon. Force began its work by organizing a number of focus groups. The AMS has now received a second grant of Council Congratulates Exxon $50,000 from the Exxon Education Foundation, as well as a grant of $165,000 from the National Science Foundation. Education Foundation For further information about the work of the Task Force, see “Building Excellence in Doctoral Mathematics De- At the Summer Mathfest in Burlington in August, the AMS partments”, Notices, November/December 1995, pages Council passed a resolution congratulating the Exxon Ed- 1170–1171. ucation Foundation on its fortieth anniversary. AMS Pres- ident Cathleen Morawetz presented the resolution during —Timothy Goggins, AMS Development Officer the awards banquet to Edward Ahnert, president of the Exxon Education Foundation, and to Robert Witte, senior program officer with Exxon. -
FOCUS August/September 2005
FOCUS August/September 2005 FOCUS is published by the Mathematical Association of America in January, February, March, April, May/June, FOCUS August/September, October, November, and Volume 25 Issue 6 December. Editor: Fernando Gouvêa, Colby College; [email protected] Inside Managing Editor: Carol Baxter, MAA 4 Saunders Mac Lane, 1909-2005 [email protected] By John MacDonald Senior Writer: Harry Waldman, MAA [email protected] 5 Encountering Saunders Mac Lane By David Eisenbud Please address advertising inquiries to: Rebecca Hall [email protected] 8George B. Dantzig 1914–2005 President: Carl C. Cowen By Don Albers First Vice-President: Barbara T. Faires, 11 Convergence: Mathematics, History, and Teaching Second Vice-President: Jean Bee Chan, An Invitation and Call for Papers Secretary: Martha J. Siegel, Associate By Victor Katz Secretary: James J. Tattersall, Treasurer: John W. Kenelly 12 What I Learned From…Project NExT By Dave Perkins Executive Director: Tina H. Straley 14 The Preparation of Mathematics Teachers: A British View Part II Associate Executive Director and Director By Peter Ruane of Publications: Donald J. Albers FOCUS Editorial Board: Rob Bradley; J. 18 So You Want to be a Teacher Kevin Colligan; Sharon Cutler Ross; Joe By Jacqueline Brennon Giles Gallian; Jackie Giles; Maeve McCarthy; Colm 19 U.S.A. Mathematical Olympiad Winners Honored Mulcahy; Peter Renz; Annie Selden; Hortensia Soto-Johnson; Ravi Vakil. 20 Math Youth Days at the Ballpark Letters to the editor should be addressed to By Gene Abrams Fernando Gouvêa, Colby College, Dept. of 22 The Fundamental Theorem of ________________ Mathematics, Waterville, ME 04901, or by email to [email protected]. -
Who Solved the Hirsch Conjecture?
Documenta Math. 75 Who Solved the Hirsch Conjecture? Gunter¨ M. Ziegler 2010 Mathematics Subject Classification: 90C05 Keywords and Phrases: Linear programming 1 Warren M. Hirsch, who posed the Hirsch conjecture In the section “The simplex interpretation of the simplex method” of his 1963 classic “Linear Programming and Extensions”, George Dantzig [5, p. 160] de- scribes “informal empirical observations” that While the simplex method appears a natural one to try in the n- dimensional space of the variables, it might be expected, a priori, to be inefficient as tehre could be considerable wandering on the out- side edges of the convex [set] of solutions before an optimal extreme point is reached. This certainly appears to be true when n − m = k is small, (...) However, empirical experience with thousands of practical problems indicates that the number of iterations is usually close to the num- ber of basic variables in the final set which were not present in the initial set. For an m-equation problem with m different variables in the final basic set, the number of iterations may run anywhere from m as a minimum, to 2m and rarely to 3m. The number is usually less than 3m/2 when there are less than 50 equations and 200 vari- ables (to judge from informal empirical observations). Some believe that on a randomly chosen problem with fixed m, the number of iterations grows in proportion to n. Thus Dantzig gives a lot of empirical evidence, and speculates about random linear programs, before quoting a conjecture about a worst case: Documenta Mathematica · Extra Volume ISMP (2012) 75–85 76 Gunter¨ M. -
Successive Spectral Sequences
Successive Spectral Sequences Benjamin Matschke Forschungsinstitut f¨urMathematik, ETH Z¨urich [email protected] August 14, 2013 Abstract If a chain complex is filtered over a poset I, then for every chain in I we obtain a spectral sequence. In this paper we define a spectral system that contains all these spectral sequences and relates their pages via differentials, extensions, and natural isomorphisms. We also study an analog of exact couples that provides a more general construction method for these spectral systems. This turns out to be a good framework for unifying several spectral sequences that one would usually apply one after another. Examples are successive Leray{ Serre spectral sequences, the Adams{Novikov spectral sequence following the chromatic spectral sequence, successive Grothendieck spectral sequences, and suc- cessive Eilenberg{Moore spectral sequences. 1 Introduction Motivation. When one applies spectral sequences successively it fairly often happens that there are several ways to do this. In this paper we unify these ways in one spectral system (short for system of spectral sequences). As an example, consider the following tower of two fibrations, i F FE / E (1) pEN i M MN / N pNB B: Our aim is to compute H∗(E) from H∗(F ), H∗(M), and H∗(B). We could apply a Leray{Serre spectral sequence to compute H∗(N) from H∗(M) and H∗(B) as an intermediate step, and then apply another Leray{Serre spectral sequence to derive 1 −1 H∗(E) from H∗(F ) and H∗(N). Alternatively we might define P := pEN (iMN (M)) = −1 (pNB ◦ pEN ) (pt) and get another sequence of fibrations, i i F FP / P PE / E (2) pPM pEB M B: Here we can apply two different but related Leray{Serre spectral sequences with inter- mediate step H∗(P ). -
2007 Newsletter
AUTUMN 2007 NEWSLETTER OF THE DEPARTMENT OF MATHEMATICS AT THE UNIVERSITY OF WASHINGTON Mathematics NEWS 1 DEPARTMENT OF MATHEMATICS NEWS MESSAGE FROM THE CHAIR As you will read in the article a number of professorships and fellowships. This by Tom Duchamp, a concerted support beyond state funding and federal grants effort by the Department has adds greatly to our effectiveness in research, edu- transformed our graduate cation and outreach. program during the past de- I would also like to acknowledge a group of col- cade. A record number of 14 leagues who contribute to every aspect of our students completed the Ph.D. work: the Department’s ten members of staff. last academic year, and ten They deserve a large share of the credit for the students finished in the previ- Department’s successes. ous academic year. In fact, all indications are that we have entered a period in which we will Our educational activities go hand in hand with continue to average over ten doctorates a year, our research, each part of our mission benefiting compared to a historical average of about 6.5. from and strengthening the other. And everything One of our goals during the past decade has been we do rests on the efforts of the Department’s the broadening of the experience and prepara- faculty. During the past decade we have built tion of our students. While the majority of our research groups in algebraic geometry, combina- doctoral graduates go on to postdoctoral positions torics and number theory. In addition we have at research institutions, several choose to work recognized the important role computation now in industry or to teach at two-year or four-year plays in mathematics; with the appointments we colleges.