Remote Nongenetic Optical Modulation of Neuronal Activity Using Fuzzy Graphene
Remote nongenetic optical modulation of neuronal activity using fuzzy graphene Sahil K. Rastogia,1, Raghav Gargb,1, Matteo Giuseppe Scopellitic, Bernardo I. Pintod, Jane E. Hartunge, Seokhyoung Kimf, Corban G. E. Murpheyf, Nicholas Johnsonb, Daniel San Romanb, Francisco Bezanillad, James F. Cahoonf, Michael S. Golde, Maysam Chamanzarc, and Tzahi Cohen-Karnia,b,2 aDepartment of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213; bDepartment of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213; cDepartment of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213; dDepartment of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637; eDepartment of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213; and fDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 Edited by John A. Rogers, Northwestern University, Evanston, IL, and approved April 28, 2020 (received for review March 23, 2020) The ability to modulate cellular electrophysiology is fundamental absorption cross-section, and limited long-term stability when a to the investigation of development, function, and disease. stable interface is needed (15, 16). Currently, there is a need for remote, nongenetic, light-induced Two-dimensional (2D) cell culture has been foundational for control of cellular activity in two-dimensional (2D) and three- in vitro research of cellular communication (17, 18). However, its dimensional (3D) platforms. Here, we report a breakthrough use for disease modeling and designing of new therapeutic in- hybrid nanomaterial for remote, nongenetic, photothermal stimu- terventions has been limited due to its challenge in portraying a lation of 2D and 3D neural cellular systems. We combine one- native 3D tissue microenvironment (19–22).
[Show full text]