Lazy Interworking of Compiled and Interpreted Code for Sandboxing and Distributed Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CSCI 2041: Lazy Evaluation
CSCI 2041: Lazy Evaluation Chris Kauffman Last Updated: Wed Dec 5 12:32:32 CST 2018 1 Logistics Reading Lab13: Lazy/Streams I Module Lazy on lazy Covers basics of delayed evaluation computation I Module Stream on streams A5: Calculon Lambdas/Closures I Arithmetic language Briefly discuss these as they interpreter pertain Calculon I 2X credit for assignment I 5 Required Problems 100pts Goals I 5 Option Problems 50pts I Eager Evaluation I Milestone due Wed 12/5 I Lazy Evaluation I Final submit Tue 12/11 I Streams 2 Evaluation Strategies Eager Evaluation Lazy Evaluation I Most languages employ I An alternative is lazy eager evaluation evaluation I Execute instructions as I Execute instructions only as control reaches associated expression results are needed code (call by need) I Corresponds closely to I Higher-level idea with actual machine execution advantages and disadvantages I In pure computations, evaluation strategy doesn’t matter: will produce the same results I With side-effects, when code is run matter, particular for I/O which may see different printing orders 3 Exercise: Side-Effects and Evaluation Strategy Most common place to see differences between Eager/Lazy eval is when functions are called I Eager eval: eval argument expressions, call functions with results I Lazy eval: call function with un-evaluated expressions, eval as results are needed Consider the following expression let print_it expr = printf "Printing it\n"; printf "%d\n" expr; ;; print_it (begin printf "Evaluating\n"; 5; end);; Predict results and output for both Eager and Lazy Eval strategies 4 Answers: Side-Effects and Evaluation Strategy let print_it expr = printf "Printing it\n"; printf "%d\n" expr; ;; print_it (begin printf "Evaluating\n"; 5; end);; Evaluation > ocamlc eager_v_lazy.ml > ./a.out Eager Eval # ocaml’s default Evaluating Printing it 5 Lazy Eval Printing it Evaluating 5 5 OCaml and explicit lazy Computations I OCaml’s default model is eager evaluation BUT. -
Reversible Programming with Negative and Fractional Types
9 A Computational Interpretation of Compact Closed Categories: Reversible Programming with Negative and Fractional Types CHAO-HONG CHEN, Indiana University, USA AMR SABRY, Indiana University, USA Compact closed categories include objects representing higher-order functions and are well-established as models of linear logic, concurrency, and quantum computing. We show that it is possible to construct such compact closed categories for conventional sum and product types by defining a dual to sum types, a negative type, and a dual to product types, a fractional type. Inspired by the categorical semantics, we define a sound operational semantics for negative and fractional types in which a negative type represents a computational effect that “reverses execution flow” and a fractional type represents a computational effect that“garbage collects” particular values or throws exceptions. Specifically, we extend a first-order reversible language of type isomorphisms with negative and fractional types, specify an operational semantics for each extension, and prove that each extension forms a compact closed category. We furthermore show that both operational semantics can be merged using the standard combination of backtracking and exceptions resulting in a smooth interoperability of negative and fractional types. We illustrate the expressiveness of this combination by writing a reversible SAT solver that uses back- tracking search along freshly allocated and de-allocated locations. The operational semantics, most of its meta-theoretic properties, and all examples are formalized in a supplementary Agda package. CCS Concepts: • Theory of computation → Type theory; Abstract machines; Operational semantics. Additional Key Words and Phrases: Abstract Machines, Duality of Computation, Higher-Order Reversible Programming, Termination Proofs, Type Isomorphisms ACM Reference Format: Chao-Hong Chen and Amr Sabry. -
Let's Get Functional
5 LET’S GET FUNCTIONAL I’ve mentioned several times that F# is a functional language, but as you’ve learned from previous chapters you can build rich applications in F# without using any functional techniques. Does that mean that F# isn’t really a functional language? No. F# is a general-purpose, multi paradigm language that allows you to program in the style most suited to your task. It is considered a functional-first lan- guage, meaning that its constructs encourage a functional style. In other words, when developing in F# you should favor functional approaches whenever possible and switch to other styles as appropriate. In this chapter, we’ll see what functional programming really is and how functions in F# differ from those in other languages. Once we’ve estab- lished that foundation, we’ll explore several data types commonly used with functional programming and take a brief side trip into lazy evaluation. The Book of F# © 2014 by Dave Fancher What Is Functional Programming? Functional programming takes a fundamentally different approach toward developing software than object-oriented programming. While object-oriented programming is primarily concerned with managing an ever-changing system state, functional programming emphasizes immutability and the application of deterministic functions. This difference drastically changes the way you build software, because in object-oriented programming you’re mostly concerned with defining classes (or structs), whereas in functional programming your focus is on defining functions with particular emphasis on their input and output. F# is an impure functional language where data is immutable by default, though you can still define mutable data or cause other side effects in your functions. -
Notes on Functional Programming with Haskell
Notes on Functional Programming with Haskell H. Conrad Cunningham [email protected] Multiparadigm Software Architecture Group Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA Fall Semester 2014 Copyright c 1994, 1995, 1997, 2003, 2007, 2010, 2014 by H. Conrad Cunningham Permission to copy and use this document for educational or research purposes of a non-commercial nature is hereby granted provided that this copyright notice is retained on all copies. All other rights are reserved by the author. H. Conrad Cunningham, D.Sc. Professor and Chair Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA [email protected] PREFACE TO 1995 EDITION I wrote this set of lecture notes for use in the course Functional Programming (CSCI 555) that I teach in the Department of Computer and Information Science at the Uni- versity of Mississippi. The course is open to advanced undergraduates and beginning graduate students. The first version of these notes were written as a part of my preparation for the fall semester 1993 offering of the course. This version reflects some restructuring and revision done for the fall 1994 offering of the course|or after completion of the class. For these classes, I used the following resources: Textbook { Richard Bird and Philip Wadler. Introduction to Functional Program- ming, Prentice Hall International, 1988 [2]. These notes more or less cover the material from chapters 1 through 6 plus selected material from chapters 7 through 9. Software { Gofer interpreter version 2.30 (2.28 in 1993) written by Mark P. -
Design Patterns in Ocaml
Design Patterns in OCaml Antonio Vicente [email protected] Earl Wagner [email protected] Abstract The GOF Design Patterns book is an important piece of any professional programmer's library. These patterns are generally considered to be an indication of good design and development practices. By giving an implementation of these patterns in OCaml we expected to better understand the importance of OCaml's advanced language features and provide other developers with an implementation of these familiar concepts in order to reduce the effort required to learn this language. As in the case of Smalltalk and Scheme+GLOS, OCaml's higher order features allows for simple elegant implementation of some of the patterns while others were much harder due to the OCaml's restrictive type system. 1 Contents 1 Background and Motivation 3 2 Results and Evaluation 3 3 Lessons Learned and Conclusions 4 4 Creational Patterns 5 4.1 Abstract Factory . 5 4.2 Builder . 6 4.3 Factory Method . 6 4.4 Prototype . 7 4.5 Singleton . 8 5 Structural Patterns 8 5.1 Adapter . 8 5.2 Bridge . 8 5.3 Composite . 8 5.4 Decorator . 9 5.5 Facade . 10 5.6 Flyweight . 10 5.7 Proxy . 10 6 Behavior Patterns 11 6.1 Chain of Responsibility . 11 6.2 Command . 12 6.3 Interpreter . 13 6.4 Iterator . 13 6.5 Mediator . 13 6.6 Memento . 13 6.7 Observer . 13 6.8 State . 14 6.9 Strategy . 15 6.10 Template Method . 15 6.11 Visitor . 15 7 References 18 2 1 Background and Motivation Throughout this course we have seen many examples of methodologies and tools that can be used to reduce the burden of working in a software project. -
Scala by Example (2009)
Scala By Example DRAFT January 13, 2009 Martin Odersky PROGRAMMING METHODS LABORATORY EPFL SWITZERLAND Contents 1 Introduction1 2 A First Example3 3 Programming with Actors and Messages7 4 Expressions and Simple Functions 11 4.1 Expressions And Simple Functions...................... 11 4.2 Parameters.................................... 12 4.3 Conditional Expressions............................ 15 4.4 Example: Square Roots by Newton’s Method................ 15 4.5 Nested Functions................................ 16 4.6 Tail Recursion.................................. 18 5 First-Class Functions 21 5.1 Anonymous Functions............................. 22 5.2 Currying..................................... 23 5.3 Example: Finding Fixed Points of Functions................ 25 5.4 Summary..................................... 28 5.5 Language Elements Seen So Far....................... 28 6 Classes and Objects 31 7 Case Classes and Pattern Matching 43 7.1 Case Classes and Case Objects........................ 46 7.2 Pattern Matching................................ 47 8 Generic Types and Methods 51 8.1 Type Parameter Bounds............................ 53 8.2 Variance Annotations.............................. 56 iv CONTENTS 8.3 Lower Bounds.................................. 58 8.4 Least Types.................................... 58 8.5 Tuples....................................... 60 8.6 Functions.................................... 61 9 Lists 63 9.1 Using Lists.................................... 63 9.2 Definition of class List I: First Order Methods.............. -
Control Flow
Control Flow COMS W4115 Prof. Stephen A. Edwards Spring 2002 Columbia University Department of Computer Science Control Flow “Time is Nature’s way of preventing everything from happening at once.” Scott identifies seven manifestations of this: 1. Sequencing foo(); bar(); 2. Selection if (a) foo(); 3. Iteration while (i<10) foo(i); 4. Procedures foo(10,20); 5. Recursion foo(int i) { foo(i-1); } 6. Concurrency foo() jj bar() 7. Nondeterminism do a -> foo(); [] b -> bar(); Ordering Within Expressions What code does a compiler generate for a = b + c + d; Most likely something like tmp = b + c; a = tmp + d; (Assumes left-to-right evaluation of expressions.) Order of Evaluation Why would you care? Expression evaluation can have side-effects. Floating-point numbers don’t behave like numbers. Side-effects int x = 0; int foo() { x += 5; return x; } int a = foo() + x + foo(); What’s the final value of a? Side-effects int x = 0; int foo() { x += 5; return x; } int a = foo() + x + foo(); GCC sets a=25. Sun’s C compiler gave a=20. C says expression evaluation order is implementation-dependent. Side-effects Java prescribes left-to-right evaluation. class Foo { static int x; static int foo() { x += 5; return x; } public static void main(String args[]) { int a = foo() + x + foo(); System.out.println(a); } } Always prints 20. Number Behavior Basic number axioms: a + x = a if and only if x = 0 Additive identity (a + b) + c = a + (b + c) Associative a(b + c) = ab + ac Distributive Misbehaving Floating-Point Numbers 1e20 + 1e-20 = 1e20 1e-20 1e20 (1 + 9e-7) + 9e-7 6= 1 + (9e-7 + 9e-7) 9e-7 1, so it is discarded, however, 1.8e-6 is large enough 1:00001(1:000001 − 1) 6= 1:00001 · 1:000001 − 1:00001 · 1 1:00001 · 1:000001 = 1:00001100001 requires too much intermediate precision. -
210 CHAPTER 7. NAMES and BINDING Chapter 8
210 CHAPTER 7. NAMES AND BINDING Chapter 8 Expressions and Evaluation Overview This chapter introduces the concept of the programming environment and the role of expressions in a program. Programs are executed in an environment which is provided by the operating system or the translator. An editor, linker, file system, and compiler form the environment in which the programmer can enter and run programs. Interac- tive language systems, such as APL, FORTH, Prolog, and Smalltalk among others, are embedded in subsystems which replace the operating system in forming the program- development environment. The top-level control structure for these subsystems is the Read-Evaluate-Write cycle. The order of computation within a program is controlled in one of three basic ways: nesting, sequencing, or signaling other processes through the shared environment or streams which are managed by the operating system. Within a program, an expression is a nest of function calls or operators that returns a value. Binary operators written between their arguments are used in infix syntax. Unary and binary operators written before a single argument or a pair of arguments are used in prefix syntax. In postfix syntax, operators (unary or binary) follow their arguments. Parse trees can be developed from expressions that include infix, prefix and postfix operators. Rules for precedence, associativity, and parenthesization determine which operands belong to which operators. The rules that define order of evaluation for elements of a function call are as follows: • Inside-out: Evaluate every argument before beginning to evaluate the function. 211 212 CHAPTER 8. EXPRESSIONS AND EVALUATION • Outside-in: Start evaluating the function body. -
61A Lecture 6 Lambda Expressions VS Currying
Announcements • Homework 2 due Tuesday 9/17 @ 11:59pm • Project 2 due Thursday 9/19 @ 11:59pm • Optional Guerrilla section next Monday for students to master higher-order functions . Organized by Andrew Huang and the readers 61A Lecture 6 . Work in a group on a problem until everyone in the group understands the solution • Midterm 1 on Monday 9/23 from 7pm to 9pm Friday, September 13 . Details and review materials will be posted early next week . There will be a web form for students who cannot attend due to a conflict 2 Lambda Expressions >>> ten = 10 An expression: this one evaluates to a number >>> square = x * x Also an expression: evaluates to a function Lambda Expressions >>> square = lambda x: x * x Important: No "return" keyword! A function with formal parameter x that returns the value of "x * x" >>> square(4) 16 Must be a single expression Lambda expressions are not common in Python, but important in general (Demo) Lambda expressions in Python cannot contain statements at all! 4 Lambda Expressions Versus Def Statements def square(x): square = lambda x: x * x VS return x * x • Both create a function with the same domain, range, and behavior. • Both functions have as their parent the environment in which they were defined. Currying • Both bind that function to the name square. • Only the def statement gives the function an intrinsic name. The Greek letter lambda Example: http://goo.gl/XH54uE 5 Function Currying def make_adder(n): return lambda k: n + k >>> make_adder(2)(3) There's a general 5 relationship between (Demo) >>> add(2, 3) these functions 5 Newton's Method Currying: Transforming a multi-argument function into a single-argument, higher-order function. -
Exam 1 Review: Solutions Capture the Dragons
CSCI 1101B: Introduction to Computer Science Instructor: Prof. Harmon Exam 1 Review: Solutions Capture the Dragons Boolean Expressions 1. Of the following, which are Boolean expressions? (a)2+3 Not Boolean (b)2>3 Boolean (c) num >= 2 Boolean (d) num1 = num2 Not Boolean 2. If x = 3, and x <= y evaluates to True, what values can y have? y >= 3 3. Simplify each of the following expressions: (a) my_num or True Depends on what the value of my_num is. See rules as in #5. (b) False and "Mary" or True True (c) False and ("Mary" or True) False 4. Is x =< y the same as x <= y? No. Python only recognizes the latter. The former is invalid syntax. 5. If x = 1 and y = 2, explain the following results: (a) >>> x and y # = 2 (b) >>> x or y # = 1 Python uses lazy evaluation. • The expression x and y first evaluates x. If x is equivalent to False (or empty/zero), its value is returned. Otherwise, y is evaluated and the resulting value is returned. • The expression x or y first evaluates x. If x is equivalent to True (or non-empty/nonzero), its value is returned. Otherwise, y is evaluated and the resulting value is returned. 1 CSCI 1101B: Introduction to Computer Science Exam 1 Review: Solutions Conditionals 1. What is indentation, and how is it related to the concept of a code block? Indentation is the placement of text (to the left or right). Python uses indenta- tion to associate code into groups, or blocks. 2. What is the difference between a chained conditional and a nested conditional? Chained => if, elif, else Nested => conditionals exist (are "nested") inside each other 3. -
CSE 341 : Programming Languages
CSE 341 : Programming Languages Lecture 10 Closure Idioms Zach Tatlock Spring 2014 More idioms • We know the rule for lexical scope and function closures – Now what is it good for A partial but wide-ranging list: • Pass functions with private data to iterators: Done • Combine functions (e.g., composition) • Currying (multi-arg functions and partial application) • Callbacks (e.g., in reactive programming) • Implementing an ADT with a record of functions (optional) 2 Combine functions Canonical example is function composition: fun compose (f,g) = fn x => f (g x) • Creates a closure that “remembers” what f and g are bound to • Type ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) but the REPL prints something equivalent • ML standard library provides this as infix operator o • Example (third version best): fun sqrt_of_abs i = Math.sqrt(Real.fromInt(abs i)) fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i val sqrt_of_abs = Math.sqrt o Real.fromInt o abs 3 Left-to-right or right-to-left val sqrt_of_abs = Math.sqrt o Real.fromInt o abs As in math, function composition is “right to left” – “take absolute value, convert to real, and take square root” – “square root of the conversion to real of absolute value” “Pipelines” of functions are common in functional programming and many programmers prefer left-to-right – Can define our own infix operator – This one is very popular (and predefined) in F# infix |> fun x |> f = f x fun sqrt_of_abs i = i |> abs |> Real.fromInt |> Math.sqrt 4 Another example • “Backup function” fun backup1 (f,g) = fn x => case -
Top Functional Programming Languages Based on Sentiment Analysis 2021 11
POWERED BY: TOP FUNCTIONAL PROGRAMMING LANGUAGES BASED ON SENTIMENT ANALYSIS 2021 Functional Programming helps companies build software that is scalable, and less prone to bugs, which means that software is more reliable and future-proof. It gives developers the opportunity to write code that is clean, elegant, and powerful. Functional Programming is used in demanding industries like eCommerce or streaming services in companies such as Zalando, Netflix, or Airbnb. Developers that work with Functional Programming languages are among the highest paid in the business. I personally fell in love with Functional Programming in Scala, and that’s why Scalac was born. I wanted to encourage both companies, and developers to expect more from their applications, and Scala was the perfect answer, especially for Big Data, Blockchain, and FinTech solutions. I’m glad that my marketing and tech team picked this topic, to prepare the report that is focused on sentiment - because that is what really drives people. All of us want to build effective applications that will help businesses succeed - but still... We want to have some fun along the way, and I believe that the Functional Programming paradigm gives developers exactly that - fun, and a chance to clearly express themselves solving complex challenges in an elegant code. LUKASZ KUCZERA, CEO AT SCALAC 01 Table of contents Introduction 03 What Is Functional Programming? 04 Big Data and the WHY behind the idea of functional programming. 04 Functional Programming Languages Ranking 05 Methodology 06 Brand24