Comparison of a Multi-Model Database with Its Single-Model Variants

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of a Multi-Model Database with Its Single-Model Variants Masaryk University Faculty of Informatics Comparison of a multi-model database with its single-model variants Bachelor’s Thesis Michal Merjavý Brno, Fall 2019 Masaryk University Faculty of Informatics Comparison of a multi-model database with its single-model variants Bachelor’s Thesis Michal Merjavý Brno, Fall 2019 This is where a copy of the official signed thesis assignment and a copy ofthe Statement of an Author is located in the printed version of the document. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Michal Merjavý Advisor: Mgr. Martin Macák i Acknowledgements I would like to thank my advisor, Mgr. Martin Macák for giving me advice which greatly improved the quality of this work. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme "Projects of Large Research, Devel- opment, and Innovations Infrastructures" (CESNET LM2015042), is greatly appreciated. iii Abstract Goal of this thesis was to complete an overview of publicly available datasets and to compare multi-model databases to its single-model counterparts specifically OrientDB to Neo4J,MongoDB. We begin with overview of NoSQL databases, their categories and we include implementations of document,graph and multi-model databases. We briefly describe publicly available datasets we found. Following that are document and graph queries that were tested and results of said queries. iv Keywords NoSQL, multi-model database, graph database, document database, time series database, OrientDB, Neo4J, MongoDB, benchmarking, datasets, public datasets v Contents Introduction 1 1 Database overview 3 1.1 NoSQL databases .......................3 1.1.1 Key-Value stores . .3 1.1.2 Document databases . .4 1.1.3 Wide-Column stores . .6 1.1.4 Graph databases . .6 1.1.5 Multi-model databases . .8 2 Public available datasets 13 2.1 Transportation ........................ 13 2.2 Environment ......................... 13 2.3 Economics ........................... 14 2.4 Health ............................. 14 2.5 Education ........................... 14 2.6 Other ............................. 14 3 Designed queries 17 3.1 Setup ............................. 17 3.1.1 Chosen datasets . 17 3.2 Graph queries ......................... 18 3.3 Document queries ....................... 19 4 Results of queries 21 4.1 Graph queries measurements ................. 21 4.2 Document queries measurements ............... 22 4.3 Summary of results ...................... 23 5 Conclusion 25 5.1 Future Work .......................... 25 Bibliography 27 vii List of Tables 1.1 Multi-model databases 6 1.2 Multi-model databases 8 1.3 Multi-model databases 11 2.1 Found datasets 15 4.1 Graphs queries 21 4.2 Document queries 22 4.3 Average times of all queries 24 ix Introduction Nowadays, almost every company needs to store and access data to work correctly; that is why most of the time, they decide to use databases. Working with data more efficiently saves time, so itis crucial to select a useful tool. One of the most challenging problems is how to deal with the variety of data they need to store. If there are two or three different types of data that the company needs to store and analyze. It would require multiple single-model databases. That includes learning to set them up properly and study query languages they use. However, if they were using multi-model databases, it is possible to only work with one database for all their purposes. Multi-model databases are getting more popular every year be- cause of their ability to support multiple data models and using one backend for all of them. The focus of the thesis is to find out whether a multi-model database can compare to its single-model counterparts and not lose too much performance due to its practicality. This thesis compares graph and document data. This thesis begins with a description of NoSQL databases in gen- eral, implementations of different multi-model, graph and document databases. It then goes on to an overview of freely available datasets that we found. Datasets are grouped by their respective fields of study. Next chapter is focused on queries and datasets we used for bench- marking. The fourth chapter includes measurements for queries that were used and interpretation of the results. 1 1 Database overview In this chapter, we provide information on NoSQL databases, Multi- model databases and introduction for some implementations of graph, document and multi-model databases. 1.1 NoSQL databases NoSQL stands for Not Only SQL, refers to a group of nonrelational data management systems; where databases do not primarily use ta- bles and most of the time do not use SQL for data manipulation [1]. NoSQL databases also provide better scalability and processing of large scale datasets. In classical database systems, transactions guaran- tee the integrity of data. However, scaling transactional-based systems proved to be a difficult problem. That is why NoSQL databases lowered the requirements on consistency and achieved better availability and partitioning. This resulted in NoSQL databases using mostly systems know as BASE (Basically Available, Soft-state, Eventually consistent) instead of transactions [2]. BASE systems do not require consistency after every transaction, but eventually being in a consistent state [3]. NoSQL databases can be classified into four basic categories: Key-Value stores, Document databases, Wide-Column stores, Graph databases. 1.1.1 Key-Value stores These data management systems use hash tables where there are unique keys and pointers to items of data creating key-value pairs [2]. Hash tables are suitable for lookup values in extremely large datasets. Key-value databases do not provide traditional database capabili- ties. To ensure atomicity of transactions and consistency of parallel transactions, users have to rely on the application itself. In Key-value databases, it is only possible to query the key part of the pair. This makes extracting records that contain a particular set of values impos- sible. Key-Value stores are suitable for applications where the speed of retrieving the data is essential because of their simplicity. Neverthe- less, if there is a necessity to query data by value, Key-value databases are not suitable. 3 1. Database overview 1.1.2 Document databases Document databases were created for improving the storage and man- agement of documents. Documents in these databases are more flex- ible than records in relational databases because they are schema- less [2]. Documents are mostly stored in one of these formats XML, JSON or BSON. Documents can contain, in most cases, multiple key- value pairs, key-array pairs, or nested documents. Document databases hold semi-structured data in attribute/value pairs. The difference between document databases and key-value stores is in the ability to search not only by key but also by values. Document databases are used for storing semi-structured data where it is not sure if the value will be entered or not, which could cause problems in relational databases [4]. It is not optimal to use document databases when the data that is used has a lot of relations. Below is a description of CouchDB and MongoDB to describe implementations of document databases. MongoDB is used for com- parison later on. Following that is a summary of differences between the databases as mentioned earlier in Table 1.1. CouchDB CouchDB1 is document-oriented NoSQL database. For storing data, it uses JSON and JavaScript is used to work with the stored data as its query language. Database in CouchDB is a collection of independent documents that sore their own data and self-contained schema. Documents also contain metadata that make it possible to merge differences that may have happened while the databases were disconnected. CouchDB does not lock the database while writing the data and any conflicts that may have occurred are left to the application to resolve. It is written in Erlang, JavaScript, C, C++ and was released in 2005. Beneath is an example of JSON that can find people with the name Michal. 1. https://couchdb.apache.org/ 4 1. Database overview { "selector":{ "firstname":"Michal" } } MongoDB MongoDB 2 is a database based on a document model. Its initial release was in 2009 and written in C++, Go, JavaScript and Python. MongoDB provides two options for storage engines WiredTiger storage engine and In-Memory storage engine [5]. Starting in Mon- goDB 3.2, the default storage engine is WiredTiger. It is recommended for new deployments and is suitable for most workloads. WiredTiger uses optimistic concurrency control for most reads and writes. In op- timistic concurrency control, only intent locks are used for global, database and collections levels. If a conflict is detected by the storage engine between two operations on the same document, one of them will incur a write conflict and is retried. WiredTiger also uses Multi- Version Concurrency Control for short MVCC. This allows MongoDB to recover from the last valid checkpoint when it encounters an er- ror while writing new checkpoint. MongoDB creates checkpoints at intervals of sixty seconds. In MongoDB, data are stored in flexible JSON-like documents; this means that fields can vary from document to document, anditis
Recommended publications
  • NUMA-Aware Thread Migration for High Performance NVMM File Systems
    NUMA-Aware Thread Migration for High Performance NVMM File Systems Ying Wang, Dejun Jiang and Jin Xiong SKL Computer Architecture, ICT, CAS; University of Chinese Academy of Sciences fwangying01, jiangdejun, [email protected] Abstract—Emerging Non-Volatile Main Memories (NVMMs) out considering the NVMM usage on NUMA nodes. Besides, provide persistent storage and can be directly attached to the application threads accessing file system rely on the default memory bus, which allows building file systems on non-volatile operating system thread scheduler, which migrates thread only main memory (NVMM file systems). Since file systems are built on memory, NUMA architecture has a large impact on their considering CPU utilization. These bring remote memory performance due to the presence of remote memory access and access and resource contentions to application threads when imbalanced resource usage. Existing works migrate thread and reading and writing files, and thus reduce the performance thread data on DRAM to solve these problems. Unlike DRAM, of NVMM file systems. We observe that when performing NVMM introduces extra latency and lifetime limitations. This file reads/writes from 4 KB to 256 KB on a NVMM file results in expensive data migration for NVMM file systems on NUMA architecture. In this paper, we argue that NUMA- system (NOVA [47] on NVMM), the average latency of aware thread migration without migrating data is desirable accessing remote node increases by 65.5 % compared to for NVMM file systems. We propose NThread, a NUMA-aware accessing local node. The average bandwidth is reduced by thread migration module for NVMM file system.
    [Show full text]
  • Graph Database for Collaborative Communities Rania Soussi, Marie-Aude Aufaure, Hajer Baazaoui
    Graph Database for Collaborative Communities Rania Soussi, Marie-Aude Aufaure, Hajer Baazaoui To cite this version: Rania Soussi, Marie-Aude Aufaure, Hajer Baazaoui. Graph Database for Collaborative Communities. Community-Built Databases, Springer, pp.205-234, 2011. hal-00708222 HAL Id: hal-00708222 https://hal.archives-ouvertes.fr/hal-00708222 Submitted on 14 Jun 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Graph Database For collaborative Communities 1, 2 1 Rania Soussi , Marie-Aude Aufaure , Hajer Baazaoui2 1Ecole Centrale Paris, Applied Mathematics & Systems Laboratory (MAS), SAP Business Objects Academic Chair in Business Intelligence 2Riadi-GDL Laboratory, ENSI – Manouba University, Tunis Abstract Data manipulated in an enterprise context are structured data as well as un- structured data such as emails, documents, social networks, etc. Graphs are a natural way of representing and modeling such data in a unified manner (Structured, semi-structured and unstructured ones). The main advantage of such a structure relies in the dynamic aspect and the capability to represent relations, even multiple ones, between objects. Recent database research work shows a growing interest in the definition of graph models and languages to allow a natural way of handling data appearing.
    [Show full text]
  • Arangodb Is Hailed As a Native Multi-Model Database by Its Developers
    ArangoDB i ArangoDB About the Tutorial Apparently, the world is becoming more and more connected. And at some point in the very near future, your kitchen bar may well be able to recommend your favorite brands of whiskey! This recommended information may come from retailers, or equally likely it can be suggested from friends on Social Networks; whatever it is, you will be able to see the benefits of using graph databases, if you like the recommendations. This tutorial explains the various aspects of ArangoDB which is a major contender in the landscape of graph databases. Starting with the basics of ArangoDB which focuses on the installation and basic concepts of ArangoDB, it gradually moves on to advanced topics such as CRUD operations and AQL. The last few chapters in this tutorial will help you understand how to deploy ArangoDB as a single instance and/or using Docker. Audience This tutorial is meant for those who are interested in learning ArangoDB as a Multimodel Database. Graph databases are spreading like wildfire across the industry and are making an impact on the development of new generation applications. So anyone who is interested in learning different aspects of ArangoDB, should go through this tutorial. Prerequisites Before proceeding with this tutorial, you should have the basic knowledge of Database, SQL, Graph Theory, and JavaScript. Copyright & Disclaimer Copyright 2018 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher.
    [Show full text]
  • Unravel Data Systems Version 4.5
    UNRAVEL DATA SYSTEMS VERSION 4.5 Component name Component version name License names jQuery 1.8.2 MIT License Apache Tomcat 5.5.23 Apache License 2.0 Tachyon Project POM 0.8.2 Apache License 2.0 Apache Directory LDAP API Model 1.0.0-M20 Apache License 2.0 apache/incubator-heron 0.16.5.1 Apache License 2.0 Maven Plugin API 3.0.4 Apache License 2.0 ApacheDS Authentication Interceptor 2.0.0-M15 Apache License 2.0 Apache Directory LDAP API Extras ACI 1.0.0-M20 Apache License 2.0 Apache HttpComponents Core 4.3.3 Apache License 2.0 Spark Project Tags 2.0.0-preview Apache License 2.0 Curator Testing 3.3.0 Apache License 2.0 Apache HttpComponents Core 4.4.5 Apache License 2.0 Apache Commons Daemon 1.0.15 Apache License 2.0 classworlds 2.4 Apache License 2.0 abego TreeLayout Core 1.0.1 BSD 3-clause "New" or "Revised" License jackson-core 2.8.6 Apache License 2.0 Lucene Join 6.6.1 Apache License 2.0 Apache Commons CLI 1.3-cloudera-pre-r1439998 Apache License 2.0 hive-apache 0.5 Apache License 2.0 scala-parser-combinators 1.0.4 BSD 3-clause "New" or "Revised" License com.springsource.javax.xml.bind 2.1.7 Common Development and Distribution License 1.0 SnakeYAML 1.15 Apache License 2.0 JUnit 4.12 Common Public License 1.0 ApacheDS Protocol Kerberos 2.0.0-M12 Apache License 2.0 Apache Groovy 2.4.6 Apache License 2.0 JGraphT - Core 1.2.0 (GNU Lesser General Public License v2.1 or later AND Eclipse Public License 1.0) chill-java 0.5.0 Apache License 2.0 Apache Commons Logging 1.2 Apache License 2.0 OpenCensus 0.12.3 Apache License 2.0 ApacheDS Protocol
    [Show full text]
  • Property Graph Vs RDF Triple Store: a Comparison on Glycan Substructure Search
    RESEARCH ARTICLE Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search Davide Alocci1,2, Julien Mariethoz1, Oliver Horlacher1,2, Jerven T. Bolleman3, Matthew P. Campbell4, Frederique Lisacek1,2* 1 Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland, 2 Computer Science Department, University of Geneva, Geneva, 1227, Switzerland, 3 Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, 1211, Switzerland, 4 Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia * [email protected] Abstract Resource description framework (RDF) and Property Graph databases are emerging tech- nologies that are used for storing graph-structured data. We compare these technologies OPEN ACCESS through a molecular biology use case: glycan substructure search. Glycans are branched Citation: Alocci D, Mariethoz J, Horlacher O, tree-like molecules composed of building blocks linked together by chemical bonds. The Bolleman JT, Campbell MP, Lisacek F (2015) molecular structure of a glycan can be encoded into a direct acyclic graph where each node Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search. PLoS ONE 10(12): represents a building block and each edge serves as a chemical linkage between two build- e0144578. doi:10.1371/journal.pone.0144578 ing blocks. In this context, Graph databases are possible software solutions for storing gly- Editor: Manuela Helmer-Citterich, University of can structures and Graph query languages, such as SPARQL and Cypher, can be used to Rome Tor Vergata, ITALY perform a substructure search. Glycan substructure searching is an important feature for Received: July 16, 2015 querying structure and experimental glycan databases and retrieving biologically meaning- ful data.
    [Show full text]
  • Artificial Intelligence for Understanding Large and Complex
    Artificial Intelligence for Understanding Large and Complex Datacenters by Pengfei Zheng Department of Computer Science Duke University Date: Approved: Benjamin C. Lee, Advisor Bruce M. Maggs Jeffrey S. Chase Jun Yang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2020 Abstract Artificial Intelligence for Understanding Large and Complex Datacenters by Pengfei Zheng Department of Computer Science Duke University Date: Approved: Benjamin C. Lee, Advisor Bruce M. Maggs Jeffrey S. Chase Jun Yang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2020 Copyright © 2020 by Pengfei Zheng All rights reserved except the rights granted by the Creative Commons Attribution-Noncommercial Licence Abstract As the democratization of global-scale web applications and cloud computing, under- standing the performance of a live production datacenter becomes a prerequisite for making strategic decisions related to datacenter design and optimization. Advances in monitoring, tracing, and profiling large, complex systems provide rich datasets and establish a rigorous foundation for performance understanding and reasoning. But the sheer volume and complexity of collected data challenges existing techniques, which rely heavily on human intervention, expert knowledge, and simple statistics. In this dissertation, we address this challenge using artificial intelligence and make the case for two important problems, datacenter performance diagnosis and datacenter workload characterization. The first thrust of this dissertation is the use of statistical causal inference and Bayesian probabilistic model for datacenter straggler diagnosis.
    [Show full text]
  • Preview Orientdb Tutorial
    OrientDB OrientDB About the Tutorial OrientDB is an Open Source NoSQL Database Management System, which contains the features of traditional DBMS along with the new features of both Document and Graph DBMS. It is written in Java and is amazingly fast. It can store 220,000 records per second on commodity hardware. In the following chapters of this tutorial, we will look closely at OrientDB, one of the best open-source, multi-model, next generation NoSQL product. Audience This tutorial is designed for software professionals who are willing to learn NoSQL Database in simple and easy steps. This tutorial will give a great understanding on OrientDB concepts. Prerequisites OrientDB is NoSQL Database technologies which deals with the Documents, Graphs and traditional database components, like Schema and relation. Thus it is better to have knowledge of SQL. Familiarity with NoSQL is an added advantage. Disclaimer & Copyright Copyright 2018 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected].
    [Show full text]
  • Application of Graph Databases for Static Code Analysis of Web-Applications
    Application of Graph Databases for Static Code Analysis of Web-Applications Daniil Sadyrin [0000-0001-5002-3639], Andrey Dergachev [0000-0002-1754-7120], Ivan Loginov [0000-0002-6254-6098], Iurii Korenkov [0000-0002-8948-2776], and Aglaya Ilina [0000-0003-1866-7914] ITMO University, Kronverkskiy prospekt, 49, St. Petersburg, 197101, Russia [email protected], [email protected], [email protected], [email protected], [email protected] Abstract. Graph databases offer a very flexible data model. We present the approach of static code analysis using graph databases. The main stage of the analysis algorithm is the construction of ASG (Abstract Source Graph), which represents relationships between AST (Abstract Syntax Tree) nodes. The ASG is saved to a graph database (like Neo4j) and queries to the database are made to get code properties for analysis. The approach is applied to detect and exploit Object Injection vulnerability in PHP web-applications. This vulnerability occurs when unsanitized user data enters PHP unserialize function. Successful exploitation of this vulnerability means building of “object chain”: a nested object, in the process of deserializing of it, a sequence of methods is being called leading to dangerous function call. In time of deserializing, some “magic” PHP methods (__wakeup or __destruct) are called on the object. To create the “object chain”, it’s necessary to analyze methods of classes declared in web-application, and find sequence of methods called from “magic” methods. The main idea of author’s approach is to save relationships between methods and functions in graph database and use queries to the database on Cypher language to find appropriate method calls.
    [Show full text]
  • Database Software Market: Billy Fitzsimmons +1 312 364 5112
    Equity Research Technology, Media, & Communications | Enterprise and Cloud Infrastructure March 22, 2019 Industry Report Jason Ader +1 617 235 7519 [email protected] Database Software Market: Billy Fitzsimmons +1 312 364 5112 The Long-Awaited Shake-up [email protected] Naji +1 212 245 6508 [email protected] Please refer to important disclosures on pages 70 and 71. Analyst certification is on page 70. William Blair or an affiliate does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. This report is not intended to provide personal investment advice. The opinions and recommendations here- in do not take into account individual client circumstances, objectives, or needs and are not intended as recommen- dations of particular securities, financial instruments, or strategies to particular clients. The recipient of this report must make its own independent decisions regarding any securities or financial instruments mentioned herein. William Blair Contents Key Findings ......................................................................................................................3 Introduction .......................................................................................................................5 Database Market History ...................................................................................................7 Market Definitions
    [Show full text]
  • Characterizing, Modeling, and Benchmarking Rocksdb Key-Value
    Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook Zhichao Cao, University of Minnesota, Twin Cities, and Facebook; Siying Dong and Sagar Vemuri, Facebook; David H.C. Du, University of Minnesota, Twin Cities https://www.usenix.org/conference/fast20/presentation/cao-zhichao This paper is included in the Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST ’20) February 25–27, 2020 • Santa Clara, CA, USA 978-1-939133-12-0 Open access to the Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST ’20) is sponsored by Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook Zhichao Cao†‡ Siying Dong‡ Sagar Vemuri‡ David H.C. Du† †University of Minnesota, Twin Cities ‡Facebook Abstract stores is still challenging. First, there are very limited studies of real-world workload characterization and analysis for KV- Persistent key-value stores are widely used as building stores, and the performance of KV-stores is highly related blocks in today’s IT infrastructure for managing and storing to the workloads generated by applications. Second, the an- large amounts of data. However, studies of characterizing alytic methods for characterizing KV-store workloads are real-world workloads for key-value stores are limited due to different from the existing workload characterization stud- the lack of tracing/analyzing tools and the difficulty of collect- ies for block storage or file systems. KV-stores have simple ing traces in operational environments. In this paper, we first but very different interfaces and behaviors. A set of good present a detailed characterization of workloads from three workload collection, analysis, and characterization tools can typical RocksDB production use cases at Facebook: UDB (a benefit both developers and users of KV-stores by optimizing MySQL storage layer for social graph data), ZippyDB (a dis- performance and developing new functions.
    [Show full text]
  • Myrocks in Mariadb
    MyRocks in MariaDB Sergei Petrunia <[email protected]> MariaDB Shenzhen Meetup November 2017 2 What is MyRocks ● #include <Yoshinori’s talk> ● This talk is about MyRocks in MariaDB 3 MyRocks lives in Facebook’s MySQL branch ● github.com/facebook/mysql-5.6 – Will call this “FB/MySQL” ● MyRocks lives there in storage/rocksdb ● FB/MySQL is easy to use if you are Facebook ● Not so easy if you are not :-) 4 FB/mysql-5.6 – user perspective ● No binaries, no packages – Compile yourself from source ● Dependencies, etc. ● No releases – (Is the latest git revision ok?) ● Has extra features – e.g. extra counters “confuse” monitoring tools. 5 FB/mysql-5.6 – dev perspective ● Targets a CentOS-type OS – Compiler, cmake version, etc. – Others may or may not [periodically] work ● MariaDB/Percona file pull requests to fix ● Special command to compile – https://github.com/facebook/mysql-5.6/wiki/Build-Steps ● Special command to run tests – Test suite assumes a big machine ● Some tests even a release build 6 Putting MyRocks in MariaDB ● Goals – Wider adoption – Ease of use – Ease of development – Have MyRocks in MariaDB ● Use it with MariaDB features ● Means – Port MyRocks into MariaDB – Provide binaries and packages 7 Status of MyRocks in MariaDB 8 Status of MyRocks in MariaDB ● MariaDB 10.2 is GA (as of May, 2017) ● It includes an ALPHA version of MyRocks plugin – Working to improve maturity ● It’s a loadable plugin (ha_rocksdb.so) ● Packages – Bintar, deb, rpm, win64 zip + MSI – deb/rpm have MyRocks .so and tools in a separate package. 9 Packaging for MyRocks in MariaDB 10 MyRocks and RocksDB library ● MyRocks is tied RocksDB@revno MariaDB – RocksDB is a github submodule – No compatibility with other versions MyRocks ● RocksDB is always compiled with RocksDB MyRocks S Z n ● l i And linked-in statically a b p ● p Distros have a RocksDB package y – Not using it.
    [Show full text]
  • The Java API Quick Reference You Can Create Both Local (That Is, Without Using a Remote Server) and Remote Database with the Java API
    The Java API quick reference You can create both local (that is, without using a remote server) and remote database with the Java API. Each kind of database has a specific related class, but they expose the same interface: • To create a local document database, use the ODatabaseDocumentTx class: ODatabaseDocumentTx db = new ODatabaseDocumentTx ("local:<path>/<db-name>").create(); • To create a local graph database, use the OGraphDatabase class: OGraphDatabase db = new GraphDatabase("local:<path>/<db-name>"). create(); • To create a local object database, use the OObjectDatabaseTx class: OGraphDatabase db = new GraphDatabase("local:<path>/<db-name>"). create(); • To create a remote database: new OServerAdmin("remote:<db-host>").connect(<root- username>,<root-password>).createDatabase(<db-name>,<db- type>,<storage-type>).close(); • To drop a remote database: new OServerAdmin("remote:<db-host>/<db-name>").connect(<root- username>,<root-password>).dropDatabase(); Where: • path: This specifies the path where you wish to create the new database. • db-host: This is the remote host. It could be an IP address or the name of the host. • root-user: This is the root username as defined in the server config file. • root-password: This is the root password as defined in the server config file. • db-name: This is the name of the database. • db-type: This specifies the type of database. It can be "document" or "graph". • storage-type: This specifies the storage type. It can be local or memory. local means that the database will be persistent, while memory means that the database will be volatile. Appendix Open and close connections To open a connection, the open API is available: <database>(<db>).open(<username>,<password>); Where: • database: This is a database class.
    [Show full text]