Chalcones and Flavanones Bearing Hydroxyl And/Or Methoxyl Groups: Synthesis and Biological Assessments

Total Page:16

File Type:pdf, Size:1020Kb

Chalcones and Flavanones Bearing Hydroxyl And/Or Methoxyl Groups: Synthesis and Biological Assessments applied sciences Article Chalcones and Flavanones Bearing Hydroxyl and/or Methoxyl Groups: Synthesis and Biological Assessments Gonçalo P. Rosa 1 , Ana M. L. Seca 1,2 , Maria do Carmo Barreto 1 , Artur M. S. Silva 2 and Diana C. G. A. Pinto 2,* 1 cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal 2 QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal * Correspondence: [email protected]; Tel.: +351-234-401-407 Received: 20 June 2019; Accepted: 14 July 2019; Published: 17 July 2019 Abstract: Chalcones and flavanones are isomeric structures and also classes of natural products, belonging to the flavonoid family. Moreover, their wide range of biological activities makes them key scaffolds for the synthesis of new and more efficient drugs. In this work, the synthesis of hydroxy and/or methoxychalcones was studied using less common bases, such as sodium hydride (NaH) and lithium bis(trimethylsilyl)amide (LiHMDS), in the aldol condensation. The results show that the use of NaH was more effective for the synthesis of 20-hydroxychalcone derivatives, while LiHMDS led to the synthesis of polyhydroxylated chalcones in a one-pot process. During this study, it was also possible to establish the conditions that favor their isomerization into flavanones, allowing at the same time the synthesis of hydroxy and/or methoxyflavanones. The chalcones and flavanones obtained were evaluated to disclose their antioxidant, anticholinesterasic, antibacterial and antitumor activities. 20,40,4-Trihydroxychalcone was the most active compound in terms of antioxidant, anti-butyrylcholinesterase (IC 26.55 0.55 µg/mL, similar to control drug donepezil, 50 ± IC 28.94 1.76 µg/mL) and antimicrobial activity. 4 ,7-Dihydroxyflavanone presented dual 50 ± 0 inhibition, that is, the ability to inhibit both cholinesterases. 40-Hydroxy-5,7-dimethoxyflavanone and 20-hydroxy-4-methoxychalcone were the compounds with the best antitumor activity. The substitution pattern and the biological assay results allowed the establishment of some structure/activity relationships. Keywords: chalcones; aldol condensation; biological activity; flavanones; cytotoxic; antioxidant; anticholinesterase 1. Introduction The (E)-1,3-diphenylpropen-1-ones, best known as chalcones, belong to the flavonoids family and are an important class of natural products across the plant kingdom [1]. Structurally, these compounds contain two aromatic rings, bonded by a three-carbon α,β unsaturated carbonyl bridge (Figure1), which are synthesized in plants as the C15 key intermediate in the biosynthesis of the other flavonoids [2]. Flavanones are also naturally occurring compounds and are chalcones’ isomeric forms. In fact, the equilibrium between chalcones and flavanones is common in nature and is regulated by chalcone-isomerase [3]. Appl. Sci. 2019, 9, 2846; doi:10.3390/app9142846 www.mdpi.com/journal/applsci Appl. Sci. 2019, 9, 2846 2 of 17 Appl. Sci. 2019, 9, x 2 of 17 Figure 1. Basic chalcone structure. Besides their natural occurrence, both chalcones and flavanonesflavanones can be obtainedobtained synthetically and are often used as thethe preferredpreferred startingstarting materialmaterial for thethe synthesissynthesis of otherother polycyclicpolycyclic aromatic compounds [[4].4]. Furthermore, Furthermore, they they present present great ph pharmacologicalarmacological potential with a wide variety of biological activities,activities, includingincluding antioxidant antioxidant [5 ],[5], anticancer anticancer [6 –[6–8],8], and and antimicrobial antimicrobial activities activities [9–12 [9–12],], and alsoand also the ability the ability to treat to treat cardiovascular cardiovascular diseases diseases and theirand their risk factorsrisk factors [13–16 [13–16],], among among others others [17]. [17]. On the otherother hand,hand, cancer,cancer, neurodegenerativeneurodegenerative diseases,diseases, oxidative stress-related diseases and multi-resistant bacterialbacterial infectionsinfections are, are, after after cardiovascular cardiovascular diseases, diseases, the the top top four four health health problems problems that causethat cause the most the most victims victims every every year, leading year, leading to higher to medicinehigher medicine consumption consumption and putting and greatputting pressure great onpressure the national on the health national systems health of systems many countries of many [countries18–24]. These [18–24]. problems These occur problems either occur due toeither a lack due of etoff ectivea lack medicinesof effective to medicines treat diseases, to treat such diseases as neurodegenerative, such as neurodegenerative ones, or due to ones, the increasing or due to drug the resistanceincreasing presenteddrug resistance by numerous presented pathogenic by numero bacteriaus pathogenic and by some bacteria cancers. and Therefore, by some exploring cancers. well-knownTherefore, exploring scaffolds well-known as lead compounds scaffolds will as lead help compounds in the battle will against help diseases in the battle that against affect humanity. diseases that affectPutting humanity. together the facts stated above, the synthesis of chalcone-based functionalized derivatives remainsPutting a popular together research the objective.facts stated The mostabove, common the synthesis and efficient of approachchalcone-b toased obtain functionalized the chalcone nucleusderivatives is the remains aldol condensation a popular research of substituted objective. acetophenones The most common with proper and efficient substituted approach benzaldehydes to obtain inthe the chalcone presence nucleus of a base, is the namely aldol condensation sodium or potassium of substituted hydroxide acetophenones [25–28]. Despitewith proper the e ffisubstitutedciency of thisbenzaldehydes method, when in the planning presence a synthesisof a base, somenamely drawbacks sodium or should potassium be considered. hydroxide For[25–28]. instance, Despite the protectionthe efficiency of the of this reagents’ method, hydroxyl when groupsplanning should a synthesis be done some previously, drawbacks the acetophenoneshould be considered. hydrogen Forα acidityinstance, should the beprotection analyzed, of and the by-products reagents’ canhydr beoxyl obtained groups if theshould bases arebe alsodone good previously, nucleophilic the speciesacetophenone [29,30]. hydrogen α acidity should be analyzed, and by-products can be obtained if the bases are alsoIn this good regard, nucleophilic the objective species of this [29,30]. work is to synthesize hydroxy- and/or methoxychalcones by aldol condensation,In this regard, using the the objective less common of this bases work sodium is to hydridesynthesize and hydroxy- lithium bis(trimethylsilyl)amide. and/or methoxychalcones Also, by thisaldol work condensation, studies their antioxidant,using the anticholinesterasic, less common antibacterialbases sodium and antitumorhydride activities, and lithium aiming tobis(trimethylsilyl)amide. establish some potential Also, medicinal this work applications. studies th Simultaneously,eir antioxidant, anticholinesterasic, a structure/activity antibacterial relationship wasand established,antitumor activities, and the isomericaiming to equilibrium establish some chalcone-flavanone potential medicinal was alsoapplications. studied. Simultaneously, a structure/activity relationship was established, and the isomeric equilibrium chalcone-flavanone 2. Materials and Methods was also studied. 2.1. General Methods 2. Materials and Methods The 1H, 13C, HSQC and HMBC NMR spectra were measured on Bruker AMC 300 or 500 instruments,2.1. General Methods operating at 300.13 MHz and 75.47 or 500.13 and 125.75 MHz. Chemical shifts were reported relative to tetramethysilane (TMS) in δ units (ppm) and coupling constants (J) in Hz. The 1H, 13C, HSQC and HMBC NMR spectra were measured on Bruker AMC 300 or 500 Chromatographic purifications were carried out by prep. TLC on silica gel (Merck silica gel 60 F ), instruments, operating at 300.13 MHz and 75.47 or 500.13 and 125.75 MHz. Chemical shifts were254 the spots being visualized under a UV lamp (at 254 and/or 366 nm). Melting points were determined reported relative to tetramethysilane (TMS) in δ units (ppm) and coupling constants (J) in Hz. with a Stuart scientific SPM3 apparatus and are uncorrected. The mass spectra were acquired using Chromatographic purifications were carried out by prep. TLC on silica gel (Merck silica gel 60 F254), ESI(+) with a Micromass Q-Tof 2TM mass spectrometer. the spots being visualized under a UV lamp (at 254 and/or 366 nm). Melting points were determined 2.2.with Synthesis a Stuart ofscientific Chalcones SPM3 and Flavanonesapparatus and are uncorrected. The mass spectra were acquired using ESI(+) with a Micromass Q-Tof 2TM mass spectrometer. Synthesis of the compounds described below follows the general scheme outlined in 3.1 (Scheme1). 2.2. Synthesis of Chalcones and Flavanones 20-Hydroxy-4,40,60-trimethoxychalcone 1. Compound 1 was synthesized by mixing 20-hydroxy-40,60- dimethoxyacetophenoneSynthesis of the compounds (661.3 mg,descri 3.37bed mmol)below follows dissolved the general in a minimum scheme outlined (~15 mL) in 3.1 amount (Scheme of tetrahydrofuran1). (THF) with sodium hydride (NaH) (2.5 equivalents), under nitrogen atmosphere at room temperature. After 30 min of stirring, 4-methoxybenzaldehyde (1.2 equivalents) was added to the2′-Hydroxy-4,4
Recommended publications
  • Flavonoid-Modifying Capabilities of the Human Gut Microbiome—An in Silico Study
    nutrients Article Flavonoid-Modifying Capabilities of the Human Gut Microbiome—An In Silico Study Tobias Goris 1,* , Rafael R. C. Cuadrat 2 and Annett Braune 1 1 Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; [email protected] 2 Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; [email protected] * Correspondence: [email protected] Abstract: Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackia isoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria.
    [Show full text]
  • Organocatalyzed Synthesis of Epoxides from Chalcones Utilizing Amino Acids
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 4-2018 Organocatalyzed Synthesis of Epoxides from Chalcones Utilizing Amino Acids Sabrina N. Kegeler Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Amino Acids, Peptides, and Proteins Commons, Medicinal-Pharmaceutical Chemistry Commons, and the Organic Chemistry Commons Recommended Citation Kegeler, Sabrina N., "Organocatalyzed Synthesis of Epoxides from Chalcones Utilizing Amino Acids" (2018). Master's Theses. 3418. https://scholarworks.wmich.edu/masters_theses/3418 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. ORGANOCATALYZED SYNTHESIS OF EPOXIDES FROM CHALCONES UTILIZING AMINO ACIDS by Sabrina N. Kegeler A thesis submitted to the Graduate College in partial fulfillment of the requirements for the degree of Master of Science Chemistry Western Michigan University April 2018 Thesis Committee: James Kiddle, Ph.D., Chair Elke Schoffers, Ph.D. Gellert Mezei, Ph.D. Copyright by Sabrina N. Kegeler 2018 ORGANOCATALYZED SYNTHESIS OF EPOXIDES FROM CHALCONES UTILIZING AMINO ACIDS Sabrina N. Kegeler, M.S. Western Michigan University, 2018 The epoxide functional group is important throughout the chemical and pharmaceutical industries, as well as in nature. In the chemical industry, epoxides are present in resins and fragrances. In the pharmaceutical industry, epoxide-containing compounds are used as intermediates in the manufacturing of drugs. In nature, many natural products contain epoxide groups and are used for medicinal purposes, and for models to create synthetic molecules.
    [Show full text]
  • RNA-Sequencing Analysis Reveals Betalains Metabolism in the Leaf of Amaranthus Tricolor L
    RESEARCH ARTICLE RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. Shengcai Liu1☯, Xueli Zheng1☯, Junfei Pan1, Liyun Peng1, Chunzhen Cheng1, Xiao Wang1, 1 1 1 1,2 1 Chunli Zhao , Zihao Zhang , Yuling Lin , Xu XuHan *, Zhongxiong LaiID * 1 Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China, 2 Institut de la Recherche Interdisciplinaire de Toulouse, Toulouse, France ☯ These authors contributed equally to this work. * [email protected](ZL); [email protected] (XXH) a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Amaranth plants contain large amounts of betalains, including betaxanthins and betacya- nins. Amaranthin is a betacyanin, and its molecular structure and associated metabolic pathway differ from those of betanin in beet plants. The chlorophyll, carotenoid, betalain, and flavonoid contents in amaranth leaves were analyzed. The abundance of betalain, beta- OPEN ACCESS cyanin, and betaxanthin was 2±5-fold higher in the red leaf sectors than in the green leaf Citation: Liu S, Zheng X, Pan J, Peng L, Cheng C, sectors. Moreover, a transcriptome database was constructed for the red and green sectors Wang X, et al. (2019) RNA-sequencing analysis of amaranth leaves harvested from 30-day-old seedlings. 22 unigenes were selected to ana- reveals betalains metabolism in the leaf of Amaranthus tricolor L.. PLoS ONE 14(4): lyze the expression profiles in the two leaf sectors. The RNA-sequencing data indicated that e0216001. https://doi.org/10.1371/journal. many unigenes are involved in betalain metabolic pathways. The potential relationships pone.0216001 between diverse metabolic pathways and betalain metabolism were analyzed.
    [Show full text]
  • Combinatorial Biosynthesis of Non-Bacterial and Unnatural Flavonoids, Stilbenoids and Curcuminoids by Microorganisms Sueharu Horinouchi
    J. Antibiot. 61(12): 709–728, 2008 THE JOURNAL OF REVIEW ARTICLE ANTIBIOTICS Combinatorial Biosynthesis of Non-bacterial and Unnatural Flavonoids, Stilbenoids and Curcuminoids by Microorganisms Sueharu Horinouchi Received: August 1, 2008 / Accepted: October 14, 2008 © Japan Antibiotics Research Association Abstract One of the approaches of combinatorial biosynthesis is combining genes from different organisms and designing a new set of gene clusters to produce bioactive compounds, leading to diversification of both chemical and natural product libraries. This makes efficient use of the potential of the host organisms, especially when microorganisms are used. An Escherichia coli system, in which artificial biosynthetic pathways for production of plant-specific medicinal polyketides, such as flavonoids, stilbenoids, isoflavonoids, and curcuminoids, are assembled, has been designed and expressed. Starting with amino acids tyrosine and phenylalanine as substrates, this system yields naringenin, resveratrol, genistein, and curcumin, for example, all of which are beneficial to human health because of their wide variety of biological activities. Supplementation of unnatural carboxylic acids to the recombinant E. coli cells carrying the artificial pathways by precursor-directed biosynthesis results in production of unnatural compounds. Addition of decorating or modification enzymes to the artificial pathway leads to production of natural and unnatural flavonols, flavones, and methylated resveratrols. This microbial system is promising for construction of larger libraries by employing other polyketide synthases and decorating enzymes of various origins. In addition, the concept of building and expressing artificial biosynthetic pathways for production of non-bacterial and unnatural compounds in microorganisms should be successfully applied to production of not only plant-specific polyketides but also many other useful compound classes.
    [Show full text]
  • Novel Methods for the Synthesis of Small Ring Systems
    Novel Methods for the Synthesis of Small Ring Systems David Stephen Pugh Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy University of York Department of Chemistry September 2011 Abstract Chapter 1 briefly reviews telescoped reactions, in particular tandem oxidation processes, detailing the background to the development of the methodology presented here, and sets out the aims for the Thesis. Chapter 2 reviews cyclopropanation methods and examines the preparation and use of triisopropylsulfoxonium tetrafluoroborate II for the preparation of gem- dimethylcyclopropanes for a range of α,β-unsaturated compounds including ketones, esters, amides, nitriles and nitro-compounds (Scheme I). Chapter 2 also examines potential applications for the methodology, outlining a route towards the synthesis of chrysanthemic acid as well as attempts towards rearrangement methodology. Scheme I: Chapter 3 demonstrates the preparation of 3-substituted oxindoles from substituted anilides in a copper-mediated cyclisation-decarboxylation sequence (Scheme II). Scheme II: This sequence is demonstrated for a range of alkyl, aryl and heteroaryl substituents in the 3-position, with methyl, benzyl and PMB protection on the nitrogen atom. Further development of the copper-cyclisation methodology leading to a catalytic system is presented, along with initial work towards a decarboxylative allylation of oxindoles. i Contents Abstract i Contents ii List of tables and figures v Acknowledgements vi Declaration vii Chapter 1:
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • Fractionation of Orange Peel Phenols in Ultrafiltered Molasses and Mass Balance Studies of Their Antioxidant Levels
    7586 J. Agric. Food Chem. 2004, 52, 7586−7592 Fractionation of Orange Peel Phenols in Ultrafiltered Molasses and Mass Balance Studies of Their Antioxidant Levels JOHN A. MANTHEY† Citrus and Subtropical Products Laboratory, Southern Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, 600 Avenue S N.W., Winter Haven, Florida 33881 Orange peel molasses, a byproduct of juice production, contains high concentrations of phenols, including numerous flavanone and flavone glycosides, polymethoxylated flavones, hydroxycinnamates, and other miscellaneous phenolic glycosides and amines. Extensive fractionation of these phenols was achieved by adsorption, ion exchange, and size exclusion chromatography. Size exclusion chromatography effectively separated the different classes of flavonoids in ultrafiltered molasses, including the polymethoxylated flavones, flavanone-O-trisaccharides, flavanone- and flavone-O- disaccharides, and, finally, flavone-C-glycosides. Mass spectral analysis of the early-eluting flavonoid fractions off the size exclusion column revealed a broad collection of minor-occurring flavone glycosides, which included, in part, glycosides of limocitrin, limocitrol, and chrysoeriol. Most hydroxycinnamates in the molasses were recovered by ion exchange chromatography, which also facilitated the recovery of fractions containing many other miscellaneous phenols. Total antioxidant levels and total phenolic contents were measured for the separate categories of phenols in the molasses. Inhibition of the superoxide anion reduction of nitroblue tetrazolium showed that a significant amount of the total antioxidant activity in orange peel molasses was attributable to minor-occurring flavones. The miscellaneous phenolic-containing fractions, in which a large portion of the total phenolic content in molasses occurred, also constituted a major portion of the total antioxidants in ultrafiltered molasses.
    [Show full text]
  • Flavonoids and Isoflavonoids Biosynthesis in the Model
    plants Review Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration Margarita García-Calderón 1, Carmen M. Pérez-Delgado 1, Peter Palove-Balang 2, Marco Betti 1 and Antonio J. Márquez 1,* 1 Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; [email protected] (M.G.-C.); [email protected] (C.M.P.-D.); [email protected] (M.B.) 2 Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +34-954557145 Received: 28 April 2020; Accepted: 18 June 2020; Published: 20 June 2020 Abstract: Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase.
    [Show full text]
  • Noncatalytic Chalcone Isomerase-Fold Proteins in Humulus Lupulus Are Auxiliary Components in Prenylated Flavonoid Biosynthesis
    Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis Zhaonan Bana,b, Hao Qina, Andrew J. Mitchellc, Baoxiu Liua, Fengxia Zhanga, Jing-Ke Wengc,d, Richard A. Dixone,f,1, and Guodong Wanga,1 aState Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cWhitehead Institute for Biomedical Research, Cambridge, MA 02142; dDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; eBioDiscovery Institute, University of North Texas, Denton, TX 76203; and fDepartment of Biological Sciences, University of North Texas, Denton, TX 76203 Contributed by Richard A. Dixon, April 25, 2018 (sent for review February 6, 2018; reviewed by Joerg Bohlmann and Mattheos A. G. Koffas) Xanthohumol (XN) and demethylxanthohumol (DMX) are special- braries have been deposited in the TrichOME database [www. ized prenylated chalconoids with multiple pharmaceutical appli- planttrichome.org (18)], and numerous large RNAseq datasets from cations that accumulate to high levels in the glandular trichomes different hop tissues or cultivars have also been made publically of hops (Humulus lupulus L.). Although all structural enzymes in available. By mining the hops transcriptome data, we and others have the XN pathway have been functionally identified, biochemical functionally identified several key terpenophenolic biosynthetic en- mechanisms underlying highly efficient production of XN have zymes from hop glandular trichomes (1, 18–23); these include car- not been fully resolved. In this study, we characterized two non- boxyl CoA ligase (CCL) genes and two aromatic prenyltransferase catalytic chalcone isomerase (CHI)-like proteins (designated as (PT) genes (HlPT1L and HlPT2) (22, 23).
    [Show full text]
  • 8.2 Shikimic Acid Pathway
    CHAPTER 8 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORAromatic SALE OR DISTRIBUTION and NOT FOR SALE OR DISTRIBUTION Phenolic Compounds © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER OUTLINE Overview Synthesis and Properties of Polyketides 8.1 8.5 Synthesis of Chalcones © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 8.2 Shikimic Acid Pathway Synthesis of Flavanones and Derivatives NOT FOR SALE ORPhenylalanine DISTRIBUTION and Tyrosine Synthesis NOT FOR SALESynthesis OR DISTRIBUTION and Properties of Flavones Tryptophan Synthesis Synthesis and Properties of Anthocyanidins Synthesis and Properties of Isofl avonoids Phenylpropanoid Pathway 8.3 Examples of Other Plant Polyketide Synthases Synthesis of Trans-Cinnamic Acid Synthesis and Activity of Coumarins Lignin Synthesis Polymerization© Jonesof Monolignols & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC Genetic EngineeringNOT FOR of Lignin SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Natural Products Derived from the 8.4 Phenylpropanoid Pathway Natural Products from Monolignols © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 119 © Jones & Bartlett Learning, LLC.
    [Show full text]
  • Flavanone-Rich Citrus Beverages Counteract the Transient Decline In
    Downloaded from British Journal of Nutrition (2017), 116, 1999–2010 doi:10.1017/S0007114516004219 © The Authors 2017 https://www.cambridge.org/core Flavanone-rich citrus beverages counteract the transient decline in postprandial endothelial function in humans: a randomised, controlled, double-masked, cross-over intervention study . IP address: Catarina Rendeiro1†, Honglin Dong1‡, Caroline Saunders2, Laura Harkness3, Melvin Blaze4, 4 3 1 1 1 Yanpeng Hou , Ronald L. Belanger , Giulia Corona §, Julie A. Lovegrove and Jeremy P. E. Spencer * 170.106.35.229 1Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, PO Box 226, Reading RG2 6AP, UK 2PepsiCo R+D Nutrition, PepsiCo Inc., Reading RG2 6UW, UK , on 3Global R+D Nutrition, PepsiCo Inc., Valhalla, NY 10595, USA 02 Oct 2021 at 21:36:07 4PepsiCo R+D Biological & Discovery Analytics, PepsiCo Inc., New Haven, CT 06511, USA (Submitted 27 June 2016 – Final revision received 23 September 2016 – Accepted 31 October 2016 – First published online 9 January 2017) Abstract , subject to the Cambridge Core terms of use, available at Specific flavonoid-rich foods/beverages are reported to exert positive effects on vascular function; however, data relating to effects in the postprandial state are limited. The present study investigated the postprandial, time-dependent (0–7 h) impact of citrus flavanone intake on vascular function. An acute, randomised, controlled, double-masked, cross-over intervention study was conducted by including middle-aged healthy men (30–65 years, n 28) to assess the impact of flavanone intake (orange juice: 128·9 mg; flavanone-rich orange juice: 272·1 mg; homogenised whole orange: 452·8 mg; isoenergetic control: 0 mg flavanones) on postprandial (double meal delivering a total of 81 g of fat) endothelial function.
    [Show full text]
  • Biochemical Characterization of a Flavonoid O-Methyltransferase from Perilla Leaves and Its Application in 7-Methoxyflavonoid Production
    molecules Article Biochemical Characterization of a Flavonoid O-methyltransferase from Perilla Leaves and Its Application in 7-Methoxyflavonoid Production 1, 2, 1 1 1 Hye Lin Park y, Jae Chul Lee y, Kyungha Lee , Jeong Min Lee , Hyo Jeong Nam , Seong Hee Bhoo 1,3, Tae Hoon Lee 2,3, Sang-Won Lee 1,* and Man-Ho Cho 1,3,* 1 Department of Genetic Engineering, Kyung Hee University, Yongin 17104, Korea; [email protected] (H.L.P.); [email protected] (K.L.); [email protected] (J.M.L.); [email protected] (H.J.N.); [email protected] (S.H.B.) 2 Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea; [email protected] (J.C.L.); [email protected] (T.H.L.) 3 Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Korea * Correspondence: [email protected] (S.-W.L.); [email protected] (M.-H.C.) These authors equally contributed to this work. y Academic Editors: Sławomir Dresler and Barbara Hawrylak-Nowak Received: 3 September 2020; Accepted: 25 September 2020; Published: 28 September 2020 Abstract: Methylation is a common structural modification that can alter and improve the biological activities of natural compounds. O-Methyltransferases (OMTs) catalyze the methylation of a wide array of secondary metabolites, including flavonoids, and are potentially useful tools for the biotechnological production of valuable natural products. An OMT gene (PfOMT3) was isolated from perilla leaves as a putative flavonoid OMT (FOMT). Phylogenetic analysis and sequence comparisons showed that PfOMT3 is a class II OMT.
    [Show full text]