Expression of Semaphorin 3A and Neuropilin 1 in Asthma

Total Page:16

File Type:pdf, Size:1020Kb

Expression of Semaphorin 3A and Neuropilin 1 in Asthma ORIGINAL ARTICLE Immunology, Allergic Disorders & Rheumatology http://dx.doi.org/10.3346/jkms.2013.28.10.1435 • J Korean Med Sci 2013; 28: 1435-1442 Expression of Semaphorin 3A and Neuropilin 1 in Asthma Eun-Jin Shim,1,2 Eunyoung Chun,1,2 Neuropilin 1 (NP1) is a part of essential receptor complexes mediating both semaphorin3A Hae-Ryun Kang,1,2 Sang-Heon Cho,1,2 (SEMA3A) and vascular endothelial growth factor (VEGF) which is one of important Kyung-Up Min,1,2 and Heung-Woo Park1,2 mediators involved in the pathogenesis of asthma. Therefore, it is possible that SEMA3A plays a role in the pathogenesis of asthma through attenuation of VEGF-mediated effects. 1 2 Department of Internal Medicine, and Institute of In the present study, we aimed to evaluate expression levels of SEMA3A and NP1 using Allergy and Clinical Immunology, Seoul National University College of Medicine, Seoul, Korea induced sputum of asthmatics and a murine model of asthma. Firstly, SEMA3A and NP1 expressions in induced sputum of asthmatics and SEMA3A and NP1 expression on Received: 7 May 2013 bronchoalveolar lavage (BAL) cells and lung homogenates of asthmatic mice were Accepted: 19 August 2013 determined. Then we evaluated the immunolocalization of VEGF receptor 1 (VEGFR1), Address for Correspondence: VEGF receptor 2 (VEGFR2), and NP1 expressions on asthmatic mice lung tissue and their Heung-Woo Park, MD subcellular distributions using fibroblast and BEAS2B cell lines. SputumSEMA3A and NP1 Department of Internal Medicine, Seoul National University expressions were significantly higher in asthmatics than controls. Similarly,SEMA3A and College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea NP1 expressions on BAL cells and lung homogenates were significantly elevated in Tel: +82.2-2072-0699, Fax: +82.2-742-2912 asthmatic mice compared to control mice. Immunohistochemical analysis showed that E-mail: [email protected] VEGFR1, VEGFR2, and NP1 expressions were also uniformly increased in asthmatic mice. This work was supported financially by a grant from Seoul National University Hospital (#0420090310). Our observations suggest that SEMA3A and NP1 may play important roles in the pathogenesis of asthma. Key Words: Asthma; Neuropilin; Semaphorin-3A (SEMA3A); Vascular Endothelial Growth Factor INTRODUCTION Accordingly, competition between VEGF and SEMA3A for NP1 binding regulated chemotaxis of carcinoma cells (13). A combi- Asthma is characterized by allergic airway inflammation and nation of an anti-VEGF antibody along with an antibody target- remodeling (1). Vascular endothelial growth factor (VEGF) is ing NP1 resulted in a greater tumor growth inhibition (14). In one of the important mediators involved in the pathogenesis of addition, SEMA3A dose-dependently improved skin lesions in asthma. VEGF is a multifunctional angiogenic regulator that a murine model of atopic dermatitis (15) in which an overpro- stimulates epithelial cell proliferation, blood vessel formation, duction of VEGF was observed (16). and endothelial cell survival (2, 3). Previous investigators re- Expression of NP1, VEGF, and SEMA3 is very low in cells of ported that VEGF levels increased in tissues and biologic sam- normal tissues, but are highly expressed in tumor-derived cells ples obtained from asthmatics (4-6). Moreover, lung-targeted (17). In addition, the ratio of VEGF/SEMA3A is markedly vari- VEGF transgenic mice showed the cardinal features of asthma, able according to tumor cells (17), which suggests that these such as airway hyperresponsiveness (AHR), airway inflamma- proteins provide an important clues for the effective therapeu- tion and remodeling (7) and VEGF levels in supernatant of in- tic approaches for cancer patients. Along with this observation, duced sputum were significantly elevated in patients with se- it was reported that a decrease in SEMA3A and increase in NP1 vere-refractory asthma compared with patients with moderate had some relationship with disease progression in ductal breast asthma and control subjects (8). In addition to two tyrosine ki- carcinoma (18). Based on those findings, we hypothesize that nase receptors (VEGF receptor 1 [Flt-1] and VEGF receptor 2 SEMA3A may play an important role in the pathogenesis of as- [KDR/Flk-1]), the biological effects of VEGF are known to be thma through the competitive binding to NP1 and resultant at- mediated by neuropilin 1 (NP1) (9, 10). NP1 was initially identi- tenuation of VEGF-mediated effects. For the first step to test our fied in neuronal cells as receptors for class 3 semaphorins (SE- hypothesis, we aimed to evaluate expression levels of SEMA3A MA3) (11, 12). Therefore, two seemingly disparate ligand fami- and NP1 using induced sputum of asthmatics and a murine lies can bind the same receptor, which suggests that SEMA3 and model of asthma in the present study. VEGF possibly compete for binding to their common receptors. © 2013 The Korean Academy of Medical Sciences. pISSN 1011-8934 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. eISSN 1598-6357 Shim E-J, et al. • Expression of SEMA3 and NP1 in Asthma MATERIALS AND METHODS croscopy (Leica Microsystems, Wetzlar, Germany). SEMA3A, NP1, and VEGF expressions in lung tissue were measured by SEMA3A and NP1 expressions in induced sputum of real time PCR. Total RNA and cDNA were prepared as describ- asthmatics ed previously (23). To evaluate clinical relevancy of SEMA3A and NP1 in human asthma, we measured SEMA3A and NP1 expressions in induced Localization of VEGFR1, VEGFR2, and NP1 in a murine sputum of normal controls and asthmatics. Normal controls model of asthma who showed negative methacholine AHR and complaint no re- We evaluated regional distributions and cellular localizations of spiratory symptoms, and asthmatics were recruited at the Seoul VEGFR1, VEGFR2, and NP1 by immunohistochemical analysis National University Hospital, Seoul, Korea. Asthma was diag- of asthmatic mice lung tissue. Immunostaining of VEGFR1, nosed in accordance with the guideline issued by the National VEGFR2, and NP1 was performed on parafin sections. The pri- Institutes of Health, Bethesda, MD, USA (19). Asthma severity mary rabbit polyclonal antibodies used were anti-VEGFR1 (Ab- was determined based on lung function and the medication cam, Cambridge, UK) at a dilution of 1:100, anti-VEGFR2 at a use index needed to obtain control, as described previously (20). dilution of 1:50, and anti-NP1 (Abcam) at a dilution of 1:50. Af- All asthmatics were treatment-naïve. Sputum induction, sam- ter fixation in cold acetone for 10 min and blocking of non-spe- ple processing, RNA extraction, and semi-quantitative reverse cific binding with 2% donkey serum for 30 min, a three-stage transcription polymerase chain reaction (RT-PCR) for SEMA3A indirect immunoperoxidase technique was used: incubation and NP1 were performed as previously described (21). The pri- with the primary antibody at 4°C overnight, followed by the se- mers used was as follows; sense 5´-GTGCCAAGGCTGAAAT- condary biotinylated donkey anti-rabbit immunoglobulin G TATCCT-3´ and antisense 5´-CCCACTTGCATTCATCTCTTCT-3´ (Jackson, Baltimore, PA, USA) (1:1,250) then the amplification for SEMA3A and sense 5´-ACGTGGAAGTCTTCGATGGAG-3´ system avidin-biotin complex (Dakopatts, Glostrup, Denmark) and antisense 5´-CACCATGTGTTTCGTAGTCAGA-3´ for NP1. (1:200). Negative control consisted of omission of the primary antibody and incubation with immunoglobulin of the same SEMA3A and NP1 expressions in a murine model of species at the same final concentration. asthma To evaluate VEGFR1, VEGFR2, and NP1 subcellular distribu- To evaluate expressions of SEMA3A and NP1, we generated a tion, we selected the immortalized epithelial cell line (BEAS2B) murine model of asthma (C57BL/6) based on intraperitoneal and fibroblast cell line (MLg, ATCC, Rockville, MD, USA), be- sensitization with ovalbumin plus alum and a subsequent in- cause immunohistochemistry analysis of asthmatic mice lung tranasal challenge with ovalbumin alone as described in our tissue showed prominent expressions of VEGFR1, VEGFR2, and previous study (22). Five mice were allocated to asthma and NP1 on the structural cells. control group respectively and one representative experiment of three replicates was presented. On the cells obtained from Statistical analysis bronchoalveolar lavage (BAL) fluid, SEMA3A and NP1 immu- Results are expressed as means ± SEMs, and were assessed us- nofluorescence staining was performed. Cell fixation was per- ing paired two-tailed tests. Statistical significance was accepted formed in 1% paraformaldehyde for 15 min with saponin 0.1% for P values of < 0.05. permeabilization for 10 min and the cells were blocked with a commercial blocking solution (Super Block; ScyTek Laborato- Ethics statement ries, Logan, UT, USA) for 15 min at room temperature. The cells All subjects enrolled in this study provided written informed were then incubated with an affinity-purified polyclonal anti- consent, and the study protocol was approved by the Seoul Na- body to SEMA3A (Novus biologicals, Littleton, CO, USA) dilut- tional University Hospital institutional review board (H-1012- ed in permeabilization solution (1:100) and NP1 (ECM biosci- 061-344). All experimental procedures were performed with enc, Versailles, KY, USA)
Recommended publications
  • The Role of Semaphorins and Their Receptors in Vascular Development and Cancer
    EXPERIMENTAL CELL RESEARCH ] ( ]]]]) ]]]– ]]] Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/yexcr Review Article The role of semaphorins and their receptors in vascular development and cancer Chenghua Gua,n, Enrico Giraudob,nn aDepartment of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA bInstitute for Cancer Research at Candiolo (IRC@C), and Department of Science and Drug Technology, University of Torino, Str. Prov. 142 Km.3,95 10060 Candiolo, Turin, Italy article information abstract Article Chronology: Semaphorins (Semas) are a large family of traditional axon guidance molecules. Through Received 1 February 2013 interactions with their receptors, Plexins and Neuropilins, Semas play critical roles in a Accepted 6 February 2013 continuously growing list of diverse biological systems. In this review, we focus on their function in regulating vascular development. In addition, over the past few years a number of Keywords: findings have shown the crucial role that Semas and their receptors play in the regulation of Semaphorin cancer progression and tumor angiogenesis. In particular, Semas control tumor progression by Plexin directly influencing the behavior of cancer cells or, indirectly, by modulating angiogenesis and Neuropilin the function of other cell types in the tumor microenvironment (i.e., inflammatory cells and Angiogenesis fibroblasts). Some Semas can activate or inhibit tumor progression and angiogenesis, while Cancer others may have the opposite effect depending on specific post-translational modifications. Here Tumor we will also discuss the diverse biological effects of Semas and their receptor complexes on Development cancer progression as well as their impact on the tumor microenvironment. & Vasculature 2013 Elsevier Inc.
    [Show full text]
  • Plexin A4 (PLXNA4) (NM 181775) Human Recombinant Protein – TP761981 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP761981 Plexin A4 (PLXNA4) (NM_181775) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Purified recombinant protein of Human plexin A4 (PLXNA4), transcript variant 2,full length, with N-terminal GST and C-terminal His tag, expressed in E. coli, 50ug Species: Human Expression Host: E. coli Tag: N-GST and C-His Predicted MW: 86 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25mM Tris, pH8.0, 150 mM NaCl, 10% glycerol,1% Sarkosyl. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_861440 Locus ID: 91584 UniProt ID: Q9HCM2 RefSeq Size: 2020 Cytogenetics: 7q32.3 RefSeq ORF: 1566 Synonyms: FAYV2820; PLEXA4; PLXNA4A; PLXNA4B; PRO34003 Summary: Coreceptor for SEMA3A. Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. Plays a role in axon guidance in the developing nervous system. Class 3 semaphorins bind to a complex composed of a neuropilin and a plexin. The plexin modulates the affinity of the complex for specific semaphorins, and its cytoplasmic domain is required for the activation of down-stream signaling events in the cytoplasm (By similarity).[UniProtKB/Swiss-Prot Function] Protein Families: Druggable Genome This product is to be used for laboratory only.
    [Show full text]
  • Expression of a Mirna Targeting Mutated SOD1 in Astrocytes Induces Motoneuron Plasticity and Improves Neuromuscular Function in ALS Mice
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425706; this version posted January 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Expression of a miRNA targeting mutated SOD1 in astrocytes induces motoneuron plasticity and improves neuromuscular function in ALS mice Rochat C.1, Bernard-Marissal N.1,6, Pradervand S.3, Perrin F.E.4, Raoul C.5, Aebischer P.1, Schneider B.L.1,2* 1 Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland 2 Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland 3 Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland. 4 INSERM U1198, University of Montpellier, EPHE, Place Eugène Bataillon CC105, F-34095, Montpellier, France 5 The Neuroscience Institute of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France 6 Aix Marseille Univ, INSERM, MMG, Marseille, France *Correspondence should be addressed to B.L.S. ([email protected]) Short title: miRNA gene therapy targeting astrocytes in ALS Study was performed in Lausanne, Switzerland Current address of corresponding author: Bernard Schneider EPFL SV PTECH PTBTG Ch. des Mines 9 CH-1202 Genève Switzerland Email: [email protected] Tel: +41 21 693 95 05 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425706; this version posted January 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism
    New Research Development The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism Jung-Lynn Jonathan Yang, Gabriel E. Bertolesi, Stephanie Dueck, Carrie L. Hehr, and Sarah McFarlane https://doi.org/10.1523/ENEURO.0086-19.2019 Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada Abstract During development the axons of neurons grow toward and locate their synaptic partners to form functional neural circuits. Axons do so by reading a map of guidance cues expressed by surrounding tissues. Guidance cues are expressed at a precise space and time, but how guidance cue expression is regulated, and in a coordinated manner, is poorly understood. Semaphorins (Semas) and Slits are families of molecular ligands that guide axons. We showed previously that fibroblast growth factor (Fgf) signaling maintains sema3a and slit1 forebrain expres- sion in Xenopus laevis, and these two repellents cooperate to guide retinal ganglion cell (RGC) axons away from the mid-diencephalon and on towards the optic tectum. Here, we investigate whether there are common features of the regulatory pathways that control the expression of these two guidance cues at this single axon guidance decision point. We isolated the sema3a proximal promoter and confirmed its responsiveness to Fgf signaling. Through misexpression of truncated Fgf receptors (Fgfrs), we found that sema3a forebrain expression is dependent on Fgfr2-4 but not Fgfr1. This is in contrast to slit1, whose expression we showed previously depends on Fgfr1 but not Fgfr2-4.
    [Show full text]
  • Kinesin-3 Family Members in Hereditary Spastic Paraplegia
    fncel-13-00419 September 25, 2019 Time: 15:27 # 1 REVIEW published: 26 September 2019 doi: 10.3389/fncel.2019.00419 Going Too Far Is the Same as Falling Short†: Kinesin-3 Family Members in Hereditary Spastic Paraplegia Dominik R. Gabrych1, Victor Z. Lau1, Shinsuke Niwa2 and Michael A. Silverman1,3* 1 Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, 2 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan, 3 Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada Proper intracellular trafficking is essential for neuronal development and function, and Edited by: when any aspect of this process is dysregulated, the resulting “transportopathy” causes Tomas Luis Falzone, neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such National Scientific and Technical Research Council (CONICET), diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by Argentina lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such Reviewed by: as those relating to microtubule structure and function and organelle biogenesis are Craig Blackstone, National Institute of Neurological representative disease loci. Microtubule motor proteins, or kinesins, are also causal Disorders and Stroke (NINDS), in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family United States members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, Thomas Huckaba, Xavier University of Louisiana, and involved in the anterograde transport of a variety of vesicles that contribute to United States pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is *Correspondence: ubiquitously expressed and, in addition to anterograde cargo transport, also functions in Michael A.
    [Show full text]
  • Trka Mediates Retrograde Semaphorin 3A Signaling Through Plexin A4 To
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 1802-1814 doi:10.1242/jcs.184580 RESEARCH ARTICLE TrkA mediates retrograde semaphorin 3A signaling through plexin A4 to regulate dendritic branching Naoya Yamashita1,2,*, Masayuki Yamane1, Fumikazu Suto3 and Yoshio Goshima1,* ABSTRACT subcellular compartments of neurons – axons, dendrites and cell – Semaphorin 3A (Sema3A), a secretory semaphorin, exerts various body need to communicate with each other. biological actions through a complex between neuropilin-1 and plexin- Semaphorin 3A (Sema3A), one of the first repulsive axon As (PlexAs). Sema3A induces retrograde signaling, which is involved guidance molecules to be recognized (Raper, 2000; Tran et al., in regulating dendritic localization of GluA2 (also known as GRIA2), 2007), plays an important role in proper neuronal network formation an AMPA receptor subunit. Here, we investigated a possible by regulating not only growth cone motility but also dendritic – interaction between retrograde signaling pathways for Sema3A and development and maturation through neuropilin-1 (NRP1) Plexin- nerve growth factor (NGF). Sema3A induces colocalization of PlexA4 A (PlexA) receptor complexes (Campbell et al., 2001; Morita et al., (also known as PLXNA4) signals with those of tropomyosin-related 2006; Polleux et al., 2000; Sasaki et al., 2002; Shelly et al., 2011; kinase A (TrkA, also known as NTRK1) in growth cones, and these Suto et al., 2003; Yamashita et al., 2014). Sema3A accelerates colocalized signals were then observed along the axons. The time- endocytosis during growth cone collapse (Fournier et al., 2000; lapse imaging of PlexA4 and several TrkA mutants showed that the Hida et al., 2012), and also induces bidirectional axonal transport kinase and dynein-binding activity of TrkA were required for Sema3A- (Goshima et al., 1999, 1997; Li et al., 2004; Yamane et al., 2012).
    [Show full text]
  • Mutation Screening of SEMA3A and SEMA7A in Patients with Congenital Hypogonadotropic Hypogonadism
    nature publishing group Clinical Investigation Articles Mutation screening of SEMA3A and SEMA7A in patients with congenital hypogonadotropic hypogonadism Johanna Känsäkoski1,2, Rainer Fagerholm1,3, Eeva-Maria Laitinen2, Kirsi Vaaralahti1,2, Peter Hackman4, Nelly Pitteloud5, Taneli Raivio1,2 and Johanna Tommiska1,2 BACKGROUND: Congenital hypogonadotropic hypogonad- FGF8, PROK2, PROKR2, CHD7, WDR11, GNRHR, GNRH1, ism (HH), a rare disorder characterized by absent, partial, or KISS1R, KISS1, TAC3, and TACR3 (5,6), have been shown delayed puberty, can be caused by the lack or deficient num- to cause the disorder. In the majority of cases, however, the ber of hypothalamic gonadotropin-releasing hormone (GnRH) molecular genetic cause remains unresolved, implying the neurons. SEMA3A was recently implicated in the etiology of the existence of additional genes underlying the condition (7). disorder, and Sema7A-deficient mice have a reduced number We have described the phenotypic and genotypic features of of GnRH neurons in their brains. Finnish patients with Kallmann syndrome (KS) (8). A molecu- METHODS: SEMA3A and SEMA7A were screened by Sanger lar genetic cause was obtained for ~40% of Finnish KS patients, sequencing in altogether 50 Finnish HH patients (34 with suggesting the presence of mutations in genes not yet impli- Kallmann syndrome (KS; HH with hyposmia/anosmia) and 16 cated to underlie this syndrome. with normosmic HH (nHH)). In 20 patients, mutation(s) had Semaphorins are a class of secreted and membrane proteins already been found in
    [Show full text]
  • Targeting Neuropilin-1 with Nanobodies Reduces Colorectal Carcinoma Development
    cancers Article Targeting Neuropilin-1 with Nanobodies Reduces Colorectal Carcinoma Development 1, 2,3, 1 Yannick De Vlaeminck y , Stefano Bonelli y, Robin Maximilian Awad , Maarten Dewilde 4 , Sabrina Rizzolio 5, Quentin Lecocq 1 , Evangelia Bolli 2,3, Ana Rita Santos 4, Damya Laoui 2,3 , Steve Schoonooghe 2,3, Luca Tamagnone 6,7 , 1 8,9 1, , Cleo Goyvaerts , Massimiliano Mazzone , Karine Breckpot * z and 2,3, , Jo A. Van Ginderachter * z 1 Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; [email protected] (Y.D.V.); [email protected] (R.M.A.); [email protected] (Q.L.); [email protected] (C.G.) 2 Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1040 Brussels, Belgium; [email protected] (S.B.); [email protected] (E.B.); [email protected] (D.L.); [email protected] (S.S.) 3 Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, 1040 Brussels, Belgium 4 VIB Discovery Sciences, 3000 Leuven, Belgium; [email protected] (M.D.); [email protected] (A.R.S.) 5 Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy; [email protected] 6 Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; [email protected] 7 Department of Oncology, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00100 Rome, Italy 8 Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, 3000 Leuven, Belgium; [email protected] 9 Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium * Correspondence: [email protected] (K.B.); [email protected] (J.A.V.G.) These authors contributed equally as co-first author.
    [Show full text]
  • CRMP2 Mediates Sema3f-Dependent Axon Pruning and Dendritic Spine
    bioRxiv preprint doi: https://doi.org/10.1101/719617; this version posted July 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling Jakub Ziak1,8, Romana Weissova1,8,¶, Kateřina Jeřábková2,¶, Martina Janikova3, Roy Maimon4, Tomas Petrasek3, Barbora Pukajova1,8, Mengzhe Wang5, Monika S. Brill5,6, Marie Kleisnerova1, Petr Kasparek2, Xunlei Zhou7, Gonzalo Alvarez-Bolado7, Radislav Sedlacek2, Thomas Misgeld5, Ales ‡ Stuchlik3, Eran Perlson4 and Martin Balastik1, 1Dpt. of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic 2Dpt. of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic 3Dpt. Of Neurophysiology of the Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic 4Dpt. of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel 5Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany 6German Center for Neurodegenerative Diseases and Munich Cluster for Systems Neurology, Munich, Germany 7Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany 8Faculty of Science, Charles University, Prague, Czech Republic ¶These authors contributed equally ‡ All correspondence should be addressed to Martin Balastik, Tel.: +420 241 062 822; E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/719617; this version posted July 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Patient Induced Pluripotent Stem Cell Model
    RESEARCH ARTICLE GSK3ß-Dependent Dysregulation of Neurodevelopment in SPG11-Patient Induced Pluripotent Stem Cell Model Himanshu K. Mishra, PhD,1 Iryna Prots, PhD,1 Steven Havlicek, PhD,1 Zacharias Kohl, MD,2 Francesc Perez-Branguli, PhD,1 Tom Boerstler, BSc,1 Lukas Anneser, MSc,1 Georgia Minakaki, MSc,2 Holger Wend,1 Martin Hampl, MSc,3 Marina Leone, PhD,4 Martina Bruckner,€ 5 Jochen Klucken, MD,2 Andre Reis, MD,6 Leah Boyer, PhD,7 Gerhard Schuierer, MD,8 Jurgen€ Behrens, PhD,5 Angelika Lampert, MD,3,9 Felix B. Engel, PhD,4 Fred H. Gage, PhD,7 Jurgen€ Winkler, MD,2 and Beate Winner, MD1 Objective: Mutations in the spastic paraplegia gene 11 (SPG11), encoding spatacsin, cause the most frequent form of autosomal-recessive complex hereditary spastic paraplegia (HSP) and juvenile-onset amyotrophic lateral sclerosis (ALS5). When SPG11 is mutated, patients frequently present with spastic paraparesis, a thin corpus callosum, and cognitive impairment. We previously delineated a neurodegenerative phenotype in neurons of these patients. In the current study, we recapitulated early developmental phenotypes of SPG11 and outlined their cellular and molecular mechanisms in patient-specific induced pluripotent stem cell (iPSC)-derived cortical neural progenitor cells (NPCs). Methods: We generated and characterized iPSC-derived NPCs and neurons from 3 SPG11 patients and 2 age- matched controls. Results: Gene expression profiling of SPG11-NPCs revealed widespread transcriptional alterations in neurodevelop- mental pathways. These include changes in cell-cycle, neurogenesis, cortical development pathways, in addition to autophagic deficits. More important, the GSK3ß-signaling pathway was found to be dysregulated in SPG11-NPCs.
    [Show full text]
  • Gpr97 Exacerbates AKI by Mediating Sema3a Signaling
    BASIC RESEARCH www.jasn.org Gpr97 Exacerbates AKI by Mediating Sema3A Signaling Wei Fang,1 Ziying Wang,1 Quanxin Li,1 Xiaojie Wang,1 Yan Zhang,1 Yu Sun,1 Wei Tang,2 Chunhong Ma,3 Jinpeng Sun,4 Ningjun Li,5 and Fan Yi1,6 1Departments of Pharmacology, 2Pathogenic Biology, 3Immunology, and 4Biochemistry and Molecular Biology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, and 6The State Key Laboratory of Microbial Technology, Shandong University, Jinan, China; and 5Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia ABSTRACT Background G protein-coupled receptors (GPCRs) participate in a variety of physiologic functions, and several GPCRs have critical physiologic and pathophysiologic roles in the regulation of renal function. We investigated the role of Gpr97, a newly identified member of the adhesion GPCR family, in AKI. Methods AKI was induced by ischemia–reperfusion or cisplatin treatment in Gpr97-deficient mice. We assessed renal injury in these models and in patients with acute tubular necrosis by histologic examination, and we conducted microarray analysis and in vitro assays to determine the molecular mechanisms of Gpr97 function. Results Gpr97 was upregulated in the kidneys from mice with AKI and patients with biopsy-proven acute tubular necrosis compared with healthy controls. In AKI models, Gpr97-deficient mice had significantly less renal injury and inflammation than wild-type mice. Gpr97 deficiency also attenuated the AKI-induced expression of semaphorin 3A (Sema3A), a potential early diagnostic biomarker of renal injury. In NRK- 52E cells subjected to oxygen–glucose deprivation, siRNA-mediated knockdown of Gpr97 further in- creased the expression of survivin and phosphorylated STAT3 and reduced toll-like receptor 4 expression.
    [Show full text]
  • Prdc Cdna Insert Product Line
    hPlexin A4 VersaClone cDNA Catalog Number: RDC1214 Specifications: Description This shuttle vector contains the complete ORF for the gene of interest, Gene: hPLXNA4 along with a Kozak consensus sequence for optimal translation initiation. It is inserted NotI to AscI. The gene insert is flanked with Accession: NP_065962 convenient multiple cloning sites which can be used to easily cut and transfer the gene cassette into your desired expression vector. Insert size: 5697bp Preparation and Storage Concentration: 10µg at 0.2μg/μL Formulation cDNA is provided in 10 mM Tris-Cl, pH 8.5 Shipping Ships at ambient temperature Stability 1 year from date of receipt when stored at -20°C to -80°C Storage Use a manual defrost freezer and avoid repeated hPlexin A4 cDNA freeze-thaw cycles. Plasmid PLXNA4 plexin A4 [ Homo sapiens (human) ] HpaI HindIII SspI BamHI Also known as: PLEXA4; PLXNA4A; BmtI NheI NotI PLXNA4B; FAYV2820; PRO34003 EagI BsiWI Summary: AMP EcoNI PLXNA4 is a member of the Plexin family of semaphorin signal transducers. It is found on sensory, COLE1 PshAI autonomic and motor neurons and oligodendrocytes, plus T cells and RDC1214 dendritic cells. PLXNA4 regulates cell 8431 bps Eco47III migration, activation, and axon XhoI guidance via repulsion. It serves as a PspXI SalI receptor for transmembrane XbaI BssHII NsiI semaphorins, Sema6A and 6B, and AscI hPlexin-A4 (1-1894) as a coreceptor with neuropilin 1 for the secreted semaphorin, Sema3A. NruI SphI Alternatively spliced transcripts AccIII encoding different proteins have been described.
    [Show full text]