Polymeric Frustrated Lewis Pairs

Total Page:16

File Type:pdf, Size:1020Kb

Polymeric Frustrated Lewis Pairs This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Polymeric Frustrated Lewis Pairs Meng Wang A thesis submitted to the University of Edinburgh for the Degree of Doctor of Philosophy 2019 Abstract Frustrated Lewis Pair (FLP) chemistry is a significant and growing field since it offers a novel non-metal catalyst for hydrogenation and small molecule activation. Once it was discovered, different FLPs with varying reactivity towards small molecules have been extensively investigated. Its research has mainly focused on small molecule- based FLPs, however, especially in the aspect of hydrogenation reactions. In the field of polymer chemistry, several examples of conventional Lewis pair adduct containing polymers have been reported but there has yet been no exploration of FLPs incorporated into polymers up to the date of this project. Dynamic crosslinked polymeric networks have attracted more attention in recent years as their shape can be post-modified after polymerisation due to their exchangeable crosslinks. This dynamic crosslinking also makes the material stimuli-responsive and provides self-healing properties. This thesis introduces the synthesis of a polymeric network with combined features of frustrated Lewis pairs and dynamic crosslinking. New monomers containing Lewis acid or Lewis base centres were designed and synthesised successfully. For the pair 4- styryl-diphenylborane and 4-styryl-diphenylphosphine, the two monomers were found to be able to bind together at high concentration in toluene so as to form a weak conventional Lewis pair (CLP) adduct. An FLP can be obtained when the phosphine monomer was replaced to its more hindered analogue, 4-styryl-dimesitylphosphine, which is reactive enough to form a complex with diethyl azodicarboxylate (DEAD), where the DEAD bridges the boron and phosphorous centres. The monomers obtained were copolymerised with styrene by RAFT polymerisations. It was also found to be possible to control both the molecular weight and the dispersity. The FLP polymers i synthesised in this way were characterised by NMR spectroscopy and gel permission chromatography. The Lewis acidity of both the monomer and resultant polymer were tested using the Gutmann-Beckett Method, and a decrease in Lewis acidity was observed when the boron monomer was polymerised. The network was synthesised by addition of DEAD into the solution containing both Lewis acid and Lewis base polymers. A gel was quickly generated (in 10 seconds). The mechanical properties of the network formed were determined by rheology. The gel was responsive to heat, in that it would break and return to a polymer solution at high temperatures. The gel formed also shows the ability to self-heal with the assistance of a solvent after physical cracking. The synthesis of the next generation of polymeric FLPs was also examined. A much more Lewis acidic boron monomer, (2,3,5,6-tetrafluorostyryl)- bis(pentafluorophenyl)borane was synthesised. This boron monomer was paired with 4-styryl-dimesitylphosphine to form a reactive FLP that was able to activate small molecules, including dihydrogen molecules and carbon dioxide. The catalysis reactivity of the hydrogenation reactions of this FLP was also explored. The copolymers made from these reactions readily formed a supramolecular gel upon mixing, which also proved temperature responsive. These early-stage results proved that this new boron-monomer is capable of generating a novel stimuli-responsive smart polymer for carbon capture and hydrogenation catalysis. Except for the polymeric FLP, some early-stage research about polymeric CLP and novel synthetic methods for boron-monomers were also introduced and discussed. ii Lay Summary Dynamic crosslinked polymer materials have received a lot of attention because they can be reshaped, reprocessed and self-healable. The reshaping and healing of this class of material is normally achieved by stimuli-triggered crosslinking exchanges. There are many dynamic bonds, either covalent or supramolecular, used as crosslinks in polymer networks, including carbon-carbon bonds based on reversible Diels-Alder or cycloaddition reactions, boronic ester or boroxine bonding, siloxane bonds, disulfide/thiol bonds, hydrogen bonds, ionic bonds, π-π stacking, and Lewis pair complexation. However, use of frustrated Lewis pairs (FLPs) as the dynamic crosslinking of a polymer gel was unprecedented. This thesis investigates the synthesis of macromolecular FLPs as a macro-gelators for generating novel dynamic crosslinked polymer networks. 4-styryl-dimesitylphoshine and 4-styryl-diphenylborane were used to make copolymers with styrene. The resultant copolymers cannot form polymer gel upon mixing due to the steric hindrance around the boron and phosphorus. Gelation was only triggered when a small molecule diethyl azodicarboxylate was added, which linked up the Lewis acids and Lewis bases. Rheology study showed that the resultant poly(FLP) gel is supramolecularly crosslinked, temperature responsive and self- healable. Finally, a fully fluorinated boron containing monomer was synthesised. This monomer showed dramatically increased Lewis acidity, and was able to activate dihydrogen and carbon dioxide when paring with the phosphine monomer. This makes it ideal to be used in the next generation macromolecular FLPs for polymer network synthesis and catalysis. iii Declaration I declare that this thesis was composed by myself, and all the work described here is of my own, unless I have acknowledged help from a named person or referenced a published work. This thesis has not been submitted, in whole or in part, for any other degree or professional qualification. Meng Wang May 2019 iv Acknowledgments The research work involved in this thesis would not have been possible without the kind support of many people, which I deeply appreciate. First of all, I would like to express my sincere gratitude to my supervisor, Prof. Michael P. Shaver, not only for providing me with an opportunity to join the Green Materials Laboratory, but also for his patient supervision of the project and enthusiasm for chemistry. His expertise ensured the completion of my project, and his valuable advice has also helped me to become a more competent chemist. I would also like to thank the School of Chemistry at the University of Edinburgh for awarding me a Tercentenary Scholarship. I would like to thank all the past and present group members, for their huge support for my research and for providing lots of valuable advice in the lab. Special thanks to: Stefan, who makes the research life of all the group members so colourful. Ben, for his knowledge that all of us benefit from. Jarret, Emily, Fern, Genny for teaching me and for their familiarity with the lab work. Panos and Rebecca, for their hard work in my mentoring. Utku, who also joined the same project, made outstanding contributions with his rheology skills. Mitch, for his patient help with this thesis. Yuechao, for his conscientiousness and sense of responsibility to the group. Thanks to all the members in the McKeown group, who are nice neighbours to work nearby. Also thanks to all the people from the Garden group for their kind help. I would also like to show my appreciation to all the people in the College of Science and Engineering who helped me with my research. Dr Lorna Murray and Mr Juraj Bella for NMR spectroscopy. Dr Logan Mackay for training and assistance with the mass spectrometer. Mr Stuart Johnstone for accepting my unlimited amount of glassware orders. Special thanks to Dr Fabio Nudelman, for his support on TEM and v SEM in my published work. Dr John Royer from the School of Physics, for his kind help with rheology measurements. Finally, I wish to thank my friends and family for their support throughout my life. Yi Li and Tairan Wang, for their 15-year-friendship, which for sure will continue and lead to more stories among us. My parents, thank you both for understanding and for your support for all the life decisions I made since from I left home. You have brought so much to me, but what I have done for you is certainly far from enough. vi Table of Contents Abstract ......................................................................................................................... i Lay Summary .............................................................................................................. iii Declaration .................................................................................................................. iv Acknowledgments ........................................................................................................ v Table of Contents ......................................................................................................
Recommended publications
  • NBO Applications, 2020
    NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020.
    [Show full text]
  • Acids Lewis Acids and Bases Lewis Acids Lewis Acids: H+ Cu2+ Al3+ Lewis Bases
    E5 Lewis Acids and Bases (Session 1) Acids November 5 - 11 Session one Bronsted: Acids are proton donors. • Pre-lab (p.151) due • Problem • 1st hour discussion of E4 • Compounds containing cations other than • Lab (Parts 1and 2A) H+ are acids! Session two DEMO • Lab: Parts 2B, 3 and 4 Problem: Some acids do not contain protons Lewis Acids and Bases Example: Al3+ (aq) = ≈ pH 3! Defines acid/base without using the word proton: + H H H • Cl-H + • O Cl- • • •• O H H Acid Base Base Acid . A BASE DONATES unbonded ELECTRON PAIR/S. An ACID ACCEPTS ELECTRON PAIR/S . Deodorants and acid loving plant foods contain aluminum salts Lewis Acids Lewis Bases . Electron rich species; electron pair donors. Electron deficient species ; potential electron pair acceptors. Lewis acids: H+ Cu2+ Al3+ “I’m deficient!” Ammonia hydroxide ion water__ (ammine) (hydroxo) (aquo) Acid 1 Lewis Acid-Base Reactions Lewis Acid-Base Reactions Example Metal ion + BONDED H H H + • to water H + • O O • • •• molecules H H Metal ion Acid + Base Complex ion surrounded by water . The acid reacts with the base by bonding to one molecules or more available electron pairs on the base. The acid-base bond is coordinate covalent. The product is a complex or complex ion Lewis Acid-Base Reaction Products Lewis Acid-Base Reaction Products Net Reaction Examples Net Reaction Examples 2+ 2+ + + Pb + 4 H2O [Pb(H2O)4] H + H2O [H(H2O)] Lewis acid Lewis base Tetra aquo lead ion Lewis acid Lewis base Hydronium ion 2+ 2+ 2+ 2+ Ni + 6 H2O [Ni(H2O)6] Cu + 4 H2O [Cu(H2O)4] Lewis acid Lewis base Hexa aquo nickel ion Lewis acid Lewis base Tetra aquo copper(II)ion DEMO DEMO Metal Aquo Complex Ions Part 1.
    [Show full text]
  • Lesson 21: Acids & Bases
    Lesson 21: Acids & Bases - Far From Basic Lesson Objectives: • Students will identify acids and bases by the Lewis, Bronsted-Lowry, and Arrhenius models. • Students will calculate the pH of given solutions. Getting Curious You’ve probably heard of pH before. Many personal hygiene products make claims about pH that are sometimes based on true science, but frequently are not. pH is the measurement of [H+] ion concentration in any solution. Generally, it can tell us about the acidity or alkaline (basicness) of a solution. Click on the CK-12 PLIX Interactive below for an introduction to acids, bases, and pH, and then answer the questions below. Directions: Log into CK-12 as follows: Username - your Whitmore School Username Password - whitmore2018 Questions: Copy and paste questions 1-3 in the Submit Box at the bottom of this page, and answer the questions before going any further in the lesson: 1. After dragging the small white circles (in this simulation, the indicator papers) onto each substance, what do you observe about the pH of each substance? 2. If you were to taste each substance (highly inadvisable in the chemistry laboratory!), how would you imagine they would taste? 3. Of the three substances, which would you characterize as acid? Which as basic? Which as neutral? Use the observed pH levels to support your hypotheses. Chemistry Time Properties of Acids and Bases Acids and bases are versatile and useful materials in many chemical reactions. Some properties that are common to aqueous solutions of acids and bases are listed in the table below. Acids Bases conduct electricity in solution conduct electricity in solution turn blue litmus paper red turn red litmus paper blue have a sour taste have a slippery feeling react with acids to create a neutral react with bases to create a neutral solution solution react with active metals to produce hydrogen gas Note: Litmus paper is a type of treated paper that changes color based on the acidity of the solution it comes in contact with.
    [Show full text]
  • Acids and Bases
    self study Most of this is probably background from a prior chemistry course; some near the end is GG325 review Aqueous Inorganic Geochemistry of Natural Waters Three important topics: 1. Acids, bases and the aqueous CO 2 system 2. Behavior of ions in aqueous solution 3. Quantifying aqueous solubility and total dissolved solids (TDS) Pease read Manahan chapter 3 and review chapter 28 (6 th Ed) for next week GG425 Wk2, S2016 Acids and Bases GG425 Wk2, S2016 1 1. Two Types of Acids and Bases: a. Brönstead acids and bases contain H + and OH - HCl ↔ H + + + Cl- (acid) NaOH ↔ Na + + OH - (base). + - water is acid and base simultaneously, H 2O ↔ H + OH . pure water and acid neutral aqueous solutions have equal amounts of H + and OH -. b. Lewis acids and bases Brönstead acids can be thought of as electron deficient ions and bases as electron excessive ions , which provides a different perspective on acidity/basisity that we can extend to other (non protic and non hydroxyl) compounds. We call this the Lewis acid/base concept. GG425 Wk2, S2016 Brönstead acidity: Kw is the equilibrium constant for the dissociation of water. + - H2O ↔ H + OH + - -14 Kw = [H ][OH ] = 10 at 25 EC Kw has a slight temperature dependence: Temp ( EC) Kw 0 10 -14.94 less dissociated 25 10 -14 60 10 -13.02 more dissociated GG425 Wk2, S2016 2 Brönstead acidity: + - H2O ↔ H + OH + - Kw = [H ][OH ] An acid neutral solution always has [H +] = [OH -]. Setting [H +] = x, yields x 2= 10 -14 x = 10 -7 = moles of H + in this solution.
    [Show full text]
  • The Reactivity of Hydrogen and Carbon Dioxide Mediated by Main Group Compounds
    THE REACTIVITY OF HYDROGEN AND CARBON DIOXIDE MEDIATED BY MAIN GROUP COMPOUNDS A dissertation submitted to Imperial College London for the degree of Doctor of Philosophy By Thomas James Herrington MChem (Oxon), Imperial College London May 2014 CID: 00467189 Supervised By Dr Andrew Ashley & Dr George Britovsek Chemistry Department 1 ABSTRACT The Reactivity of Hydrogen and Carbon Dioxide Mediated by Main Group Compounds The focus of this thesis has been the design and synthesis of new frustrated Lewis pair (FLP) systems which from structural modifications retain their ability to activate H2/CO2, while displaying differing reactivity modes. Chapter Two describes the first practical synthesis of tris[3,5- bis(trifluoromethyl)phenyl]borane (BArF18). Gutmann-Beckett Lewis acidity measurements reveal that this borane is a more powerful Lewis acid than B(C6F5)3, but it nevertheless is found to bind H2O much more reversibly than B(C6F5)3. The BArF18/2,2,6,6- tetramethylpiperidine (TMP) FLP provides a rare example of H2 activation in Et2O solvent, in which the borohydride salt has been structurally characterised by X-ray crystallography. A – novel bridging borohydride [-H(BArF18)2] was revealed, which contrasts to the characteristic terminal borohydrides formed by other borane based mediated FLP systems. Chapter Three details the design of fluorinated trisalkylboranes including B[CH(C6F5)2]3 which has been synthesised for the first time. This borane has been structurally characterised using X-ray crystallography and displays hydrogen bonding interactions between the ortho fluorines on each aryl ring and the adjacent CH proton. Interestingly, and despite this borane showing no Lewis acidity using Gutmann-Beckett and Childs techniques, the B[CH(C6F5)2]3/TMP FLP provides a rare example of H2 activation in THF solvent.
    [Show full text]
  • Group 16 Elements in Frustrated Lewis Pair Chemistry
    Group 16 Elements in Frustrated Lewis Pair Chemistry by Fu An Tsao A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemistry University of Toronto © Copyright by Fu An Tsao 2018 Group 16 Elements in Frustrated Lewis Pair Chemistry Fu An Tsao Doctor of Philosophy Department of Chemistry University of Toronto 2018 Abstract Frustrated Lewis Pairs (FLPs) describe combinations of sterically encumbered Lewis acids and bases that do not form classical adducts. This unquenched reactivity has been shown to activate a wide plethora of small molecules, including H2, CO2, alkynes and ketones. While many different main group compounds have been applied in this context, studies of group 16 elements in FLP chemistry remain scarce. The main objective of this dissertation is to expand the scope of FLP chemistry to include group 16 elements, as they can function both as Lewis bases and as Lewis acids. The first portion of this dissertation focuses on the syntheses and reactivity studies of tellurium-boron heterocycles, wherein tellurium acts as a Lewis base. 1,1-carboboration of tellurium-substituted acetylides was shown to proceed smoothly at room temperature, leading to the formation of Te/B intramolecular FLP and 1,4-telluraborine. Several 1,4- telluraborines were found to have mild to high aromaticity as manifested by their unusual stability against oxygen and moisture. They can also undergo a number of unique reactions, including FLP-type alkyne exchange reactions and selective protonolysis of the exocyclic B–C bond. These findings allowed for the facile derivatization of this new class of compounds.
    [Show full text]
  • General Chemistry/Properties and Theories of Acids and Bases 1 General Chemistry/Properties and Theories of Acids and Bases
    General Chemistry/Properties and Theories of Acids and Bases 1 General Chemistry/Properties and Theories of Acids and Bases Acid-Base Reaction Theories Acids and bases are everywhere. Some foods contain acid, like the citric acid in lemons and the lactic acid in dairy. Cleaning products like bleach and ammonia are bases. Chemicals that are acidic or basic are an important part of chemistry. Helpful Hint! You may need to refresh your memory on naming acids. Several different theories explain what composes an acid and a base. The first scientific definition of an acid was proposed by the French chemist Antoine Lavoisier in the eighteenth century. He proposed that acids contained oxygen, although he did not know the dual composition of acids such as hydrochloric acid (HCl). Over the years, much more accurate definitions of acids and bases have been created. Arrhenius Theory The Swedish chemist Svante Arrhenius published his theory of acids and bases in 1887. It can be simply explained by these two points: Arrhenius Acids and Bases 1. An acid is a substance which dissociates in water to produce one or more hydrogen ions (H+). 2. A base is a substance which dissociates in water to produce one or more hydroxide ions (OH-). Based on this definition, you can see that Arrhenius acids must be soluble in water. Arrhenius acid-base reactions can be summarized with three generic equations: Svante Arrhenius General Chemistry/Properties and Theories of Acids and Bases 2 An acid will dissociate in water producing hydrogen ions. A base (usually containing a metal) will dissociate in water to product hydroxide ions.
    [Show full text]
  • Bifunctional Systems in the Chemistry of Frustrated Lewis Pairs
    Bifunctional Systems in the Chemistry of Frustrated Lewis Pairs by Xiaoxi Zhao A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemistry University of Toronto © Copyright by Xiaoxi Zhao 2012 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-97235-9 Our file Notre référence ISBN: 978-0-494-97235-9 NOTICE: AVIS: The author has granted a non- L'auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distrbute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Investigations Into the Hydrogenation of Epoxides by Frustrated Lewis
    Investigations into the Frustrated Lewis Pair-Catalyzed Hydrogenation of Epoxides MASTERTHESIS Martine R. Tiddens 19-02-2016 Supervisor: Dr. Matthias Otte Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science 2 Abstract Traditionally hydrogenation of unsaturated substrates is a transition metal (TM)-catalyzed or stoichiometric transformation. The report about heterolytic H2-activation via Frustrated Lewis Pairs (FLP) allows the performance of classic TM-catalyzed reactions in an organocatalytic fashion. In the last decade the substrate scope for FLP-catalyzed hydrogenation has grown steadily. However, to the best of our knowledge epoxides have not yet been successfully reduced. The epoxide motive is an important building block in organic synthesis or product in natural product synthesis. Currently, hydrogenation of epoxides to alcohols is a stoichiometric or a TM-complex catalyzed transformation. Here, attempts to FLP-catalyzed hydrogenations of epoxides to alcohols are described. The known FLPs B(C6F5)3/1,4-dioxane and B(C6F5)3/diethyl ether, which are used for the FLP-catalyzed hydrogenation of carbonyl moieties, were tested for possible hydrogenation of epoxides. Meinwald rearrangement of the epoxide to an aldehyde is observed. With this result a tandem isomerization-hydrogenation reaction was envisioned. Here an epoxide rearranges to an aldehyde, upon which it should be reduced to an alcohol. Unfortunately, this reaction was not successful. The reactivity of less electron-poor Lewis acids in FLP-catalyzed hydrogenation of epoxides was investigated. Upon investigations of adduct formation between the Lewis acids with trans- phenylpropane oxide, a Lewis acid dependent reactivity of the epoxide was found. trans-phenylpropane oxide dimerizes upon stoichiometric exposure to B(C6F5)3, but isomerizes to an aldehyde when exposed to B(C7H8)3.
    [Show full text]
  • Acids and Bases
    Acids and Bases 362 2020 Lecture 15 Lewis approach to acid/base interactions Gilbert Newton Lewis 1875 – 1946 Lewis Concept Lewis, 1930s: Base is a donor of an electron pair. Acid is an acceptor of an electron pair. For a species to function as a Lewis acid, it needs to have an accessible empty orbital. For a species to function as a Lewis base it needs to have an accessible electron pair. + + 6+ Examples of Lewis acids: BF3, AlCl3, SbF5, Na , H , S , etc. - Examples of Lewis bases: F , H2O, Me3N, C2H4, Xe, etc. Lewis Continued A more general view also classifies compounds that can generate a species with an empty orbital as Lewis acids. Then we can include B2H6, Al2Cl6, HCl etc. Since H+ and any cation from a solvent autodissociation is a Lewis acid, and anything that can add H+ or a solvent- derived cation is a Lewis base, the Lewis acid concept effectively includes the ones discussed previously. Lewis Continued Acid-base reactions under the Lewis model are the reactions of forming adducts between Lewis acids and bases. BF3 + Me3N F3B-NMe3 HF + F- FHF- - 2- SiF4 + 2F SiF6 - - CO2 + OH HCO3 TiCl4 + 2Et2O TiCl4(OEt2)2 In fact, any chemical compound can be mentally disassembled into Lewis acids and bases: 6+ - S + 6F SF6 4+ - - + - C + 3H + NH2 CH3 + NH2 Lewis Acids & Bases Other good examples involve metal ions. ••• •O—H 2+ •• 2+ Co • O—H Co • H ACID BASE H 2+ [Co(H2O)6] Empty d2sp3 hybrids on Cobalt account for the Lewis Acid/Base interactions Lewis Acids & Bases The combination of metal ions (Lewis acids) with Lewis bases such as H2O and NH3 ------> COMPLEX IONS All metal ions form complex ions with water —and are of n+ the type [M(H2O)x] where x = 4 and 6.
    [Show full text]
  • Acids and Bases—Chapter 4 Shriver Et Al
    Acids and Bases—Chapter 4 Shriver et al. MIT 3091 Video Lecture: Acids and Bases on You Tube http://ocw.mit.edu/courses/materials-science-and-engineering/3-091sc- introduction-to-solid-state-chemistry-fall-2010/aqueous-solutions/26- acids-and-bases/ Acid-Base concepts Gilbert Newton Lewis 1875 – 1946 Lewis Concept Lewis, 1930s: Base is a donor of an electron pair. Acid is an acceptor of an electron pair. For a species to function as a Lewis acid, it needs to have an accessible empty orbital. For a species to function as a Lewis base it needs to have an accessible electron pair. + + 6+ Examples of Lewis acids: BF3, AlCl3, SbF5, Na , H , S , etc. - Examples of Lewis bases: F , H2O, Me3N, C2H4, Xe, etc. Lewis Concept—Connection to MO Theory Lewis, 1930s: Base is a donor of an electron pair. Acid is an acceptor of an electron pair. For a species to function as a Lewis acid, it needs to have an accessible empty orbital. For a species to function as a Lewis base it needs to have an accessible electron pair. Examples of Lewis acids: BF3, AlCl3, + + 6+ SbF5, Na , H , S , etc. - Examples of Lewis bases: F , H2O, Me3N, C2H4, Xe, etc. Lewis Continued A more general view also classifies compounds that can generate a species with an empty orbital as Lewis acids. Then we can include B2H6, Al2Cl6, HCl etc. Since H+ and any cation from a solvent autodissociation is a Lewis acid, and anything that can add H+ or a solvent- derived cation is a Lewis base, the Lewis acid concept effectively includes the ones discussed previously.
    [Show full text]
  • Chapter 14: Acids,Bases and Salts ❖Many Household Substances, Including Cleaning Solutions and Food/Beverages Sections 14.1 – 14.5 That We Consume, Are Acids Or Bases
    Why study acids & bases? Chapter 14: Acids,Bases and Salts ❖Many household substances, including cleaning solutions and food/beverages Sections 14.1 – 14.5 that we consume, are acids or bases. CHM152 GCC ❖ In the environment, the pH of rain, water and soil can also have significant effects. ❖Acid – base reactions occurring in our body are essential for life. They are also OpenSTAX: Chemistry involved in many industrial processes. 1 2 Acid vs. Base Characteristics Acid-Base Models Acids Bases CHM 150/151 taught Arrhenius theory ▪ Taste sour ❑ Taste bitter, chalky Acids produce hydrogen ions in water ▪ Corrode most metals ❑ Feel soapy, slippery ▪ HA (aq) → H+ (aq) + A- (aq) ▪ Turn litmus paper red ❑ Turn litmus paper blue Bases produce hydroxide ions in water ▪ MOH (aq) M+ (aq) + OH- (aq) ▪ Have low pH’s ❑ Have high pH’s → ▪ E.g. vinegar, lemon juice, ❑ E.g. milk of magnesia, CHM 152 uses Brønsted-Lowry theory gastric juice, soft drinks bleach, ammonia, drano Bronsted Acid: Substance that can donate H+ Acid loses H+ Bronsted Base: Substance that can accept H+ Base gains H+ 3 4 Bronsted-Lowry Reactions involve the Bronsted Acids and Bases transfer of 1 H+ A conjugate acid is formed when a Brønsted A conjugate base is formed when a Brønsted base accepts a proton. acid loses a proton. Gains a proton Loses a proton Gains a proton Loses a proton + – + – NH3(aq) + H2O(l) ⇌ NH4 (aq) + OH (aq) HCl(aq) + H2O(l) ⇌ H3O (aq) + Cl (aq) base acid conjugate conjugate acid base conjugate conjugate acid base acid base conjugate pair: differ by 1 H+ ion Note: Water is amphoteric – it can act as an acid or a base depending on what its reacting with.
    [Show full text]