Models in Microeconomic Theory Covers Basic Models in Current Microeconomic Theory

Total Page:16

File Type:pdf, Size:1020Kb

Models in Microeconomic Theory Covers Basic Models in Current Microeconomic Theory Models in Microeconomic Theory Models in Microeconomic Theory covers basic models in current microeconomic theory. Part I (Chapters 1–7) presents models of an economic agent, discussing abstract models of preferences, choice, and decision making under uncertainty, before turning to models of the consumer, the producer, and monopoly. Part II (Chapters 8–14) introduces the concept of equilibrium, beginning, unconven� onally, with the models of the jungle and an economy with indivisible goods, and con� nuing with models of an exchange economy, equilibrium with ra� onal expecta� ons, and an economy with asymmetric informa� on. Part III (Chapters Martin J. Osborne 15–16) provides an introduc� on to game theory, covering strategic and extensive games and the concepts of Nash equilibrium and subgame perfect equilibrium. Part IV (Chapters Ariel Rubinstein 17–20) gives a taste of the topics of mechanism design, matching, the axioma� c analysis of economic systems, and social choice. The book focuses on the concepts of model and equilibrium. It states models and results precisely, and provides proofs for all results. It uses only elementary mathema� cs (with almost no calculus), although many of the proofs involve sustained logical arguments. It includes about 150 exercises. With its formal but accessible style, this textbook is designed for undergraduate students of microeconomics at intermediate and advanced levels. As with all Open Book publica� ons, this en� re book is available to read for free on the publisher’s website. Printed and digital edi� ons, together with supplementary digital material, can also be found at www.openbookpublishers.com Cover design by Mar� n J. Osborne book ebooke and OA edi� ons also available OPEN ACCESS www.openbookpublishers.com OBP s MODELS IN MICROECONOMIC THEORY MODELS IN MICROECONOMIC THEORY Martin J. Osborne University of Toronto Ariel Rubinstein Tel Aviv University New York University https://www.openbookpublishers.com c 2020 Martin J. Osborne and Ariel Rubinstein This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs license (CC BY-NC-ND 4.0). This license allows you to share, copy, distribute, and trans- mit the work providing you do not modify the work, you do not use the work for com- mercial purposes, you attribute the work to the authors, and you provide a link to the license. Attribution should not in any way suggest that the authors endorse you or your use of the work and should include the following information. Martin J. Osborne and Ariel Rubinstein, Models in Microeconomic Theory. Cambridge, UK: Open Book Publishers, 2020, https://doi.org/10.11647/OBP.0211. To access detailed and updated information on the license, please visit https://www. openbookpublishers.com/product/1171#copyright. Further details about CC BY licenses are available at https://creativecommons.org/ licenses/by-nc-nd/4.0/. All external links were active at the time of publication un- less otherwise stated and have been archived via the Internet Archive Wayback Machine at https://archive.org/web. Updated digital material and resources associated with this book are available at https: //www.openbookpublishers.com/product/1171#resources. Every effort has been made to identify and contact copyright holders and any omission or error will be corrected if notification is made to the publisher. ISBN Paperback: 978-1-78374-892-1 ISBN Hardback: 978-1-78374-893-8 ISBN Digital (PDF): 978-1-78374-894-5 DOI: 10.11647/OBP.0211 This book is available in two versions, one that uses feminine pronouns and one that uses masculine pronouns. This version uses feminine pronouns. Version: 2020.12.21 (s) Contents Personal note xi Preface xiii Part I Individual behavior 1 1 Preferences and utility 3 1.1 Preferences 3 1.2 Preference formation 7 1.3 An experiment 8 1.4 Utility functions 9 Problems 13 Notes 15 2 Choice 17 2.1 Choice and rational choice 17 2.2 Rationalizing choice 18 2.3 Property α 21 2.4 Satisficing 22 2.5 The money pump argument 23 2.6 Evidence of choices inconsistent with rationality 24 Problems 27 Notes 29 3 Preferences under uncertainty 31 3.1 Lotteries 31 3.2 Preferences over lotteries 31 3.3 Expected utility 35 3.4 Theory and experiments 38 3.5 Risk aversion 39 Problems 41 Notes 43 v vi Contents 4 Consumer preferences 45 4.1 Bundles of goods 45 4.2 Preferences over bundles 46 4.3 Monotonicity 48 4.4 Continuity 49 4.5 Convexity 50 4.6 Differentiability 53 Problems 54 Notes 56 5 Consumer behavior 57 5.1 Budget sets 57 5.2 Demand functions 58 5.3 Rational consumer 59 5.4 Differentiable preferences 61 5.5 Rationalizing a demand function 64 5.6 Properties of demand functions 68 Problems 71 Notes 74 6 Producer behavior 75 6.1 The producer 75 6.2 Output maximization 77 6.3 Profit maximization 79 6.4 Cost function 81 6.5 Producers’ preferences 84 Problems 85 Notes 87 7 Monopoly 89 7.1 Basic model 89 7.2 Uniform-price monopolistic market 90 7.3 Discriminatory monopoly 94 7.4 Implicit discrimination 96 Problems 99 Notes 102 Contents vii Part II Equilibrium 103 8 A jungle 105 8.1 Model 105 8.2 Equilibrium 108 8.3 Pareto stability 110 8.4 Equilibrium and Pareto stability in a jungle 112 8.5 Which allocations can be obtained by a social planner who controls the power relation? 113 8.6 Externalities 116 Problems 118 Notes 120 9 A market 121 9.1 Model 121 9.2 Existence and construction of a market equilibrium 127 9.3 Equilibrium and Pareto stability 131 9.4 Uniqueness of market equilibrium 132 Problems 134 Notes 135 10 An exchange economy 137 10.1 Model 137 10.2 Competitive equilibrium 139 10.3 Existence of a competitive equilibrium 144 10.4 Reopening trade 145 10.5 Equilibrium and Pareto stability 146 10.6 The core 148 10.7 Competitive equilibrium based on demand functions 149 10.8 Manipulability 150 10.9 Edgeworth box 150 Problems 152 Notes 155 11 Variants of an exchange economy 157 11.1 Market with indivisible good and money 157 11.2 Exchange economy with uncertainty 164 Problems 171 Notes 173 viii Contents 12 A market with consumers and producers 175 12.1 Production economy 175 12.2 An economy with capital and labor 180 Problems 183 13 Equilibrium with prices and expectations 187 13.1 Distributing customers among bank branches 187 13.2 Asymmetric information and adverse selection 192 13.3 A fishing economy 196 Problems 199 Notes 201 14 A market with asymmetric information 203 14.1 Introductory model 203 14.2 Labor market with education 204 Problems 211 Notes 213 Part III Game theory 215 15 Strategic games 217 15.1 Strategic games and Nash equilibrium 217 15.2 Basic examples 218 15.3 Economic examples 223 15.4 Existence of Nash equilibrium 229 15.5 Strictly competitive games 232 15.6 Kantian equilibrium 234 15.7 Mixed strategies 235 15.8 Interpreting Nash equilibrium 241 Problems 241 Notes 246 16 Extensive games 249 16.1 Extensive games and subgame perfect equilibrium 250 16.2 What is a strategy? 256 16.3 Backward induction 257 16.4 Bargaining 263 Problems 275 Notes 278 Contents ix Part IV Topics 279 17 Mechanism design 281 17.1 Deciding on a public project 281 17.2 Strategy-proof mechanisms 282 17.3 The Vickrey-Clarke-Groves mechanism 284 Problems 287 Notes 288 18 Matching 289 18.1 The matching problem 289 18.2 The Gale-Shapley algorithm 290 18.3 The Gale-Shapley algorithm and stability 295 Problems 298 Notes 299 19 Socialism 301 19.1 Model 301 19.2 Properties of economic systems 304 19.3 Characterization of socialism 307 Problems 310 Notes 311 20 Aggregating preferences 313 20.1 Social preferences 313 20.2 Preference aggregation functions 314 20.3 Properties of preference aggregation functions 316 20.4 Arrow’s impossibility theorem 319 20.5 Gibbard-Satterthwaite theorem 323 Problems 326 Notes 328 References 329 Personal note In 1981 I joined the Department of Economics at the Hebrew University of Jerusalem and started teaching a course in “Price Theory”. In those days, I battled colleagues to bring some game theory into the course — a step that was frowned upon. In 1986, I stopped teaching undergraduate microeconomics (with excep- tions in one or two years). But, as my retirement from my Israeli university ap- proached, I felt an urge to return to the subject. For five years (2012–2017), I taught a course in intermediate microeconomics at Tel Aviv University. This time I tried to put less game theory in the course and focus more on concepts of mar- ket equilibrium. One can view this trajectory as part of a cycle of life. But a prin- ciple also links my strivings during these two periods: I don’t see anything holy in economic models. I don’t view a model as right or wrong. I find some models interesting and others less so. I prefer to teach a course that contains a vari- ety of models and not to be dogmatic regarding one particular approach. And I don’t have any respect for what is considered to be fashionable by the academic community. The lecture notes (in Hebrew) from my course in Tel Aviv were the basis of this book. I thank my Teaching Assistants in that course for their help. In 2016, I joined forces with my old friend and coauthor Martin Osborne. The collaboration reshaped my original sloppy lecture notes in both style and degree of precision.
Recommended publications
  • ESA Missions AO Analysis
    ESA Announcements of Opportunity Outcome Analysis Arvind Parmar Head, Science Support Office ESA Directorate of Science With thanks to Kate Isaak, Erik Kuulkers, Göran Pilbratt and Norbert Schartel (Project Scientists) ESA UNCLASSIFIED - For Official Use The ESA Fleet for Astrophysics ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 2 ESA Announcement of Observing Opportunities Ø Observing time AOs are normally only used for ESA’s observatory missions – the targets/observing strategies for the other missions are generally the responsibility of the Science Teams. Ø ESA does not provide funding to successful proposers. Ø Results for ESA-led missions with recent AOs presented: • XMM-Newton • INTEGRAL • Herschel Ø Gender information was not requested in the AOs. It has been ”manually” derived by the project scientists and SOC staff. ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 3 XMM-Newton – ESA’s Large X-ray Observatory ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 4 XMM-Newton Ø ESA’s second X-ray observatory. Launched in 1999 with annual calls for observing proposals. Operational. Ø Typically 500 proposals per XMM-Newton Call with an over-subscription in observing time of 5-7. Total of 9233 proposals. Ø The TAC typically consists of 70 scientists divided into 13 panels with an overall TAC chair. Ø Output is >6000 refereed papers in total, >300 per year ESA UNCLASSIFIED - For Official Use
    [Show full text]
  • Uniqueness and Symmetry in Bargaining Theories of Justice
    Philos Stud DOI 10.1007/s11098-013-0121-y Uniqueness and symmetry in bargaining theories of justice John Thrasher Ó Springer Science+Business Media Dordrecht 2013 Abstract For contractarians, justice is the result of a rational bargain. The goal is to show that the rules of justice are consistent with rationality. The two most important bargaining theories of justice are David Gauthier’s and those that use the Nash’s bargaining solution. I argue that both of these approaches are fatally undermined by their reliance on a symmetry condition. Symmetry is a substantive constraint, not an implication of rationality. I argue that using symmetry to generate uniqueness undermines the goal of bargaining theories of justice. Keywords David Gauthier Á John Nash Á John Harsanyi Á Thomas Schelling Á Bargaining Á Symmetry Throughout the last century and into this one, many philosophers modeled justice as a bargaining problem between rational agents. Even those who did not explicitly use a bargaining problem as their model, most notably Rawls, incorporated many of the concepts and techniques from bargaining theories into their understanding of what a theory of justice should look like. This allowed them to use the powerful tools of game theory to justify their various theories of distributive justice. The debates between partisans of different theories of distributive justice has tended to be over the respective benefits of each particular bargaining solution and whether or not the solution to the bargaining problem matches our pre-theoretical intuitions about justice. There is, however, a more serious problem that has effectively been ignored since economists originally J.
    [Show full text]
  • Implementation Theory*
    Chapter 5 IMPLEMENTATION THEORY* ERIC MASKIN Institute for Advanced Study, Princeton, NJ, USA TOMAS SJOSTROM Department of Economics, Pennsylvania State University, University Park, PA, USA Contents Abstract 238 Keywords 238 1. Introduction 239 2. Definitions 245 3. Nash implementation 247 3.1. Definitions 248 3.2. Monotonicity and no veto power 248 3.3. Necessary and sufficient conditions 250 3.4. Weak implementation 254 3.5. Strategy-proofness and rich domains of preferences 254 3.6. Unrestricted domain of strict preferences 256 3.7. Economic environments 257 3.8. Two agent implementation 259 4. Implementation with complete information: further topics 260 4.1. Refinements of Nash equilibrium 260 4.2. Virtual implementation 264 4.3. Mixed strategies 265 4.4. Extensive form mechanisms 267 4.5. Renegotiation 269 4.6. The planner as a player 275 5. Bayesian implementation 276 5.1. Definitions 276 5.2. Closure 277 5.3. Incentive compatibility 278 5.4. Bayesian monotonicity 279 * We are grateful to Sandeep Baliga, Luis Corch6n, Matt Jackson, Byungchae Rhee, Ariel Rubinstein, Ilya Segal, Hannu Vartiainen, Masahiro Watabe, and two referees, for helpful comments. Handbook of Social Choice and Welfare, Volume 1, Edited by K.J Arrow, A.K. Sen and K. Suzumura ( 2002 Elsevier Science B. V All rights reserved 238 E. Maskin and T: Sj'str6m 5.5. Non-parametric, robust and fault tolerant implementation 281 6. Concluding remarks 281 References 282 Abstract The implementation problem is the problem of designing a mechanism (game form) such that the equilibrium outcomes satisfy a criterion of social optimality embodied in a social choice rule.
    [Show full text]
  • Two Fundamental Theorems About the Definite Integral
    Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than that used by Stewart, but is based on the same fundamental ideas. 1 The definite integral Recall that the expression b f(x) dx ∫a is called the definite integral of f(x) over the interval [a,b] and stands for the area underneath the curve y = f(x) over the interval [a,b] (with the understanding that areas above the x-axis are considered positive and the areas beneath the axis are considered negative). In today's lecture I am going to prove an important connection between the definite integral and the derivative and use that connection to compute the definite integral. The result that I am eventually going to prove sits at the end of a chain of earlier definitions and intermediate results. 2 Some important facts about continuous functions The first intermediate result we are going to have to prove along the way depends on some definitions and theorems concerning continuous functions. Here are those definitions and theorems. The definition of continuity A function f(x) is continuous at a point x = a if the following hold 1. f(a) exists 2. lim f(x) exists xœa 3. lim f(x) = f(a) xœa 1 A function f(x) is continuous in an interval [a,b] if it is continuous at every point in that interval. The extreme value theorem Let f(x) be a continuous function in an interval [a,b].
    [Show full text]
  • Herschel Space Observatory and the NASA Herschel Science Center at IPAC
    Herschel Space Observatory and The NASA Herschel Science Center at IPAC u George Helou u Implementing “Portals to the Universe” Report April, 2012 Implementing “Portals to the Universe”, April 2012 Herschel/NHSC 1 [OIII] 88 µm Herschel: Cornerstone FIR/Submm Observatory z = 3.04 u Three instruments: imaging at {70, 100, 160}, {250, 350 and 500} µm; spectroscopy: grating [55-210]µm, FTS [194-672]µm, Heterodyne [157-625]µm; bolometers, Ge photoconductors, SIS mixers; 3.5m primary at ambient T u ESA mission with significant NASA contributions, May 2009 – February 2013 [+/-months] cold Implementing “Portals to the Universe”, April 2012 Herschel/NHSC 2 Herschel Mission Parameters u Userbase v International; most investigator teams are international u Program Model v Observatory with Guaranteed Time and competed Open Time v ESA “Corner Stone Mission” (>$1B) with significant NASA contributions v NASA Herschel Science Center (NHSC) supports US community u Proposals/cycle (2 Regular Open Time cycles) v Submissions run 500 to 600 total, with >200 with US-based PI (~x3.5 over- subscription) u Users/cycle v US-based co-Investigators >500/cycle on >100 proposals u Funding Model v NASA funds US data analysis based on ESA time allocation u Default Proprietary Data Period v 6 months now, 1 year at start of mission Implementing “Portals to the Universe”, April 2012 Herschel/NHSC 3 Best Practices: International Collaboration u Approach to projects led elsewhere needs to be designed carefully v NHSC Charter remains firstly to support US community v But ultimately success of THE mission helps everyone v Need to express “dual allegiance” well and early to lead/other centers u NHSC became integral part of the larger team, worked for Herschel success, though focused on US community participation v Working closely with US community reveals needs and gaps for all users v Anything developed by NHSC is available to all users of Herschel v Trust follows from good teaming: E.g.
    [Show full text]
  • MATH 1512: Calculus – Spring 2020 (Dual Credit) Instructor: Ariel
    MATH 1512: Calculus – Spring 2020 (Dual Credit) Instructor: Ariel Ramirez, Ph.D. Email: [email protected] Office: LRC 172 Phone: 505-925-8912 OFFICE HOURS: In the Math Center/LRC or by Appointment COURSE DESCRIPTION: Limits. Continuity. Derivative: definition, rules, geometric and rate-of- change interpretations, applications to graphing, linearization and optimization. Integral: definition, fundamental theorem of calculus, substitution, applications to areas, volumes, work, average. Meets New Mexico Lower Division General Education Common Core Curriculum Area II: Mathematics (NMCCN 1614). (4 Credit Hours). Prerequisites: ((123 or ACCUPLACER College-Level Math =100-120) and (150 or ACT Math =28- 31 or SAT Math Section =660-729)) or (153 or ACT Math =>32 or SAT Math Section =>730). COURSE OBJECTIVES: 1. State, motivate and interpret the definitions of continuity, the derivative, and the definite integral of a function, including an illustrative figure, and apply the definition to test for continuity and differentiability. In all cases, limits are computed using correct and clear notation. Student is able to interpret the derivative as an instantaneous rate of change, and the definite integral as an averaging process. 2. Use the derivative to graph functions, approximate functions, and solve optimization problems. In all cases, the work, including all necessary algebra, is shown clearly, concisely, in a well-organized fashion. Graphs are neat and well-annotated, clearly indicating limiting behavior. English sentences summarize the main results and appropriate units are used for all dimensional applications. 3. Graph, differentiate, optimize, approximate and integrate functions containing parameters, and functions defined piecewise. Differentiate and approximate functions defined implicitly. 4. Apply tools from pre-calculus and trigonometry correctly in multi-step problems, such as basic geometric formulas, graphs of basic functions, and algebra to solve equations and inequalities.
    [Show full text]
  • MATCHING with RENEGOTIATION 1. Introduction Deferred Acceptance
    MATCHING WITH RENEGOTIATION AKIHIKO MATSUI AND MEGUMI MURAKAMI Abstract. The present paper studies the deferred acceptance algorithm (DA) with renegotiation. After DA assigns objects to players, the players may renegotiate. The final allocation is prescribed by a renegotiation mapping, of which value is a strong core given an allocation induced by DA. We say that DA is strategy-proof with renegotiation if for any true preference profile and any (poten- tially false) report, an optimal strategy for each player is to submit the true preference. We then have the first theorem: DA is not strategy-proof with renegotiation for any priority structure. The priority structure is said to be unreversed if there are two players who have higher priority than the others at any object, and the other players are aligned in the same order across objects. Then, the second theorem states that the DA rule is implemented in Nash equilibrium with renegotiation, or equivalently, any Nash equilibrium of DA with renegotiation induces the same allocation as the DA rule, if and only if the priority structure is unreversed. Keywords: deferred acceptance algorithm (DA), indivisible object, renegotiation mapping, strong core, strategy-proofness with renegotiation, Nash implementation with renegotiation, unreversed priority JEL Classification Numbers: C78, D47 1. Introduction Deferred acceptance algorithm (DA) has been studied since the seminal paper by Gale and Shapley (1962). A class of problems investigated therein includes college admissions and office assignments. In these problems, the centralized mechanism assigns objects to players based on their preferences over objects and priorities for the objects over the players. Two notable prop- erties of DA are stability and strategy-proofness (Gale & Shapley, 1962; Dubins & Freedman, 1981; Roth, 1982).
    [Show full text]
  • Differentiating an Integral
    Differentiating an Integral P. Haile, February 2020 b(t) Leibniz Rule. If (t) = a(t) f(z, t)dz, then R d b(t) @f(z, t) db da = dz + f (b(t), t) f (a(t), t) . dt @t dt dt Za(t) That’s the rule; now let’s see why this is so. We start by reviewing some things you already know. Let f be a smooth univariate function (i.e., a “nice” function of one variable). We know from the fundamental theorem of calculus that if the function is defined as x (x) = f(z) dz Zc (where c is a constant) then d (x) = f(x). (1) dx You can gain some really useful intuition for this by remembering that the x integral c f(z) dz is the area under the curve y = f(z), between z = a and z = x. Draw this picture to see that as x increases infinitessimally, the added contributionR to the area is f (x). Likewise, if c (x) = f(z) dz Zx then d (x) = f(x). (2) dx Here, an infinitessimal increase in x reduces the area under the curve by an amount equal to the height of the curve. Now suppose f is a function of two variables and define b (t) = f(z, t)dz (3) Za where a and b are constants. Then d (t) b @f(z, t) = dz (4) dt @t Za i.e., we can swap the order of the operations of integration and differentiation and “differentiate under the integral.” You’ve probably done this “swapping” 1 before.
    [Show full text]
  • International Space Station Basics Components of The
    National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles.
    [Show full text]
  • The Definite Integral
    Mathematics Learning Centre Introduction to Integration Part 2: The Definite Integral Mary Barnes c 1999 University of Sydney Contents 1Introduction 1 1.1 Objectives . ................................. 1 2 Finding Areas 2 3 Areas Under Curves 4 3.1 What is the point of all this? ......................... 6 3.2 Note about summation notation ........................ 6 4 The Definition of the Definite Integral 7 4.1 Notes . ..................................... 7 5 The Fundamental Theorem of the Calculus 8 6 Properties of the Definite Integral 12 7 Some Common Misunderstandings 14 7.1 Arbitrary constants . ............................. 14 7.2 Dummy variables . ............................. 14 8 Another Look at Areas 15 9 The Area Between Two Curves 19 10 Other Applications of the Definite Integral 21 11 Solutions to Exercises 23 Mathematics Learning Centre, University of Sydney 1 1Introduction This unit deals with the definite integral.Itexplains how it is defined, how it is calculated and some of the ways in which it is used. We shall assume that you are already familiar with the process of finding indefinite inte- grals or primitive functions (sometimes called anti-differentiation) and are able to ‘anti- differentiate’ a range of elementary functions. If you are not, you should work through Introduction to Integration Part I: Anti-Differentiation, and make sure you have mastered the ideas in it before you begin work on this unit. 1.1 Objectives By the time you have worked through this unit you should: • Be familiar with the definition of the definite integral as the limit of a sum; • Understand the rule for calculating definite integrals; • Know the statement of the Fundamental Theorem of the Calculus and understand what it means; • Be able to use definite integrals to find areas such as the area between a curve and the x-axis and the area between two curves; • Understand that definite integrals can also be used in other situations where the quantity required can be expressed as the limit of a sum.
    [Show full text]
  • Herschel Space Observatory-An ESA Facility for Far-Infrared And
    Astronomy & Astrophysics manuscript no. 14759glp c ESO 2018 October 22, 2018 Letter to the Editor Herschel Space Observatory? An ESA facility for far-infrared and submillimetre astronomy G.L. Pilbratt1;??, J.R. Riedinger2;???, T. Passvogel3, G. Crone3, D. Doyle3, U. Gageur3, A.M. Heras1, C. Jewell3, L. Metcalfe4, S. Ott2, and M. Schmidt5 1 ESA Research and Scientific Support Department, ESTEC/SRE-SA, Keplerlaan 1, NL-2201 AZ Noordwijk, The Netherlands e-mail: [email protected] 2 ESA Science Operations Department, ESTEC/SRE-OA, Keplerlaan 1, NL-2201 AZ Noordwijk, The Netherlands 3 ESA Scientific Projects Department, ESTEC/SRE-P, Keplerlaan 1, NL-2201 AZ Noordwijk, The Netherlands 4 ESA Science Operations Department, ESAC/SRE-OA, P.O. Box 78, E-28691 Villanueva de la Canada,˜ Madrid, Spain 5 ESA Mission Operations Department, ESOC/OPS-OAH, Robert-Bosch-Strasse 5, D-64293 Darmstadt, Germany Received 9 April 2010; accepted 10 May 2010 ABSTRACT Herschel was launched on 14 May 2009, and is now an operational ESA space observatory offering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55−671 µm. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time.
    [Show full text]
  • Whither Game Theory? Towards a Theory of Learning in Games
    Whither Game Theory? Towards a Theory of Learning in Games The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Fudenberg, Drew, and David K. Levine. “Whither Game Theory? Towards a Theory of Learning in Games.” Journal of Economic Perspectives, vol. 30, no. 4, Nov. 2016, pp. 151–70. As Published http://dx.doi.org/10.1257/jep.30.4.151 Publisher American Economic Association Version Final published version Citable link http://hdl.handle.net/1721.1/113940 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Journal of Economic Perspectives—Volume 30, Number 4—Fall 2016—Pages 151–170 Whither Game Theory? Towards a Theory of Learning in Games Drew Fudenberg and David K. Levine hen we were graduate students at MIT (1977–81), the only game theory mentioned in the first-year core was static Cournot (1838) oligopoly, W although Eric Maskin taught an advanced elective on game theory and mechanism design. Just ten years later, game theory had invaded mainstream economic research and graduate education, and instructors had a choice of three graduate texts: Fudenberg and Tirole (1991), Osborne and Rubinstein (1994), and Myerson (1997). Game theory has been successful in economics because it works empirically in many important circumstances. Many of the theoretical applications in the 1980s involved issues in industrial organization, like commitment and timing in patent races and preemptive investment.
    [Show full text]