Summer 1993 Vol

Total Page:16

File Type:pdf, Size:1020Kb

Summer 1993 Vol . CONTENTS Zew 4wee - - - A PERIODICAL OF PARTICLE PHYSICS SUMMER 1993 VOL. 23, NUMBER 2 FEATURES Editors RENE DONALDSON, MICHAEL RIORDAN A PEOPLE'S GUIDE TO THE STANDARD MODEL Executive Editor A non-technicalintroduction BILL KIRK to the dominant theory of particlephysics. Editorial Advisory Board Patricia Burchat JAMES BJORKEN, ROBERT N. CAHN, DAVID HITLIN STEWART C. LOKEN, RONALD RUTH 8 TWO PREVIOUS STANDARD MODELS WINICK MARVIN WEINSTEIN, HERMAN Scientists of Napoleonic France and Victorian England believed Photographic Services in universalphysical theories TOM NAKASHIMA that were the "standardmodels" BETTE REED of their times. Illustrations J. L. Heilbron TERRY ANDERSON, KEVIN JOHNSTON 15 POSITRON EMISSION TOMOGRAPHY SYLVIA MACBRIDE, JIM WAHL A promising medical imaging technique Distribution that borrows heavily from nuclear and particle physics is giving physicians TILGHMAN CRYSTAL a valuable new window on the functions of the human body. Mark Mandelkern DEPARTMENTS The Beam Line is published quarterly by the Stanford Linear Accelerator Center, P.O. Box 4349, Stanford, CA 94309. 24 THE UNIVERSE AT LARGE Telephone: (415) 926-2585 INTERNET: [email protected] Some Faint, ParticularStars: 1 BITNET: BEAMLINE@SLACVM Virginia Trimble FAX: (415) 926-4500 SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the 30 DATES TO REMEMBER authors do not necessarily reflect the policy of the Stanford Linear Accelerator Center. 31 TOWARD THE NEXT LINEAR COLLIDER Cover: Image of the brain of an epilepsy patient made using Probing the TeV Energy Scale Positron Emission Tomography (PET). It indicates substantially reduced metabolic activity in the left temporal lobe (blue area Fred Harris and Xerxes Tata at lower right), consistent with an epileptogenic focus, which is the likely source of this patient's seizures. PEOPLE AND EVENTS (This image and that on page 15 courtesy of Peter S. Conti, Director, 34 PET Imaging Service Center, University of Southern California) 39 FROM THE EDITORS' DESK Printed on Recycled Paper Ah 40 CONTRIBUTORS A PEOPLE TO THE S r by PATRICIA BURCHAT A non-technical in to the dominant ti of particle physics. "THE SI commo around theoret journal articles is so ml usually BEAM LINE 1 Over the past 30 years or so, this processes are never seen to occur. In very successful model of the many cases, the absence of a subatomic world-a combination of particular type of process leads to a assumptions and mathematical "conservation rule," which tells us theories-has evolved based on the that some property or quantity is work of many experimental and neither gained nor lost in a given theoretical physicists and on data reaction. A familiar example is con- from particle research laboratories servation of electric charge: the net around the world. It has been electric charge at the beginning of extremely successful at describing every reaction must equal the net the interactions that occur between electric charge at the end. This simple the fundamental particles that make conservation rule eliminates many up matter. Two of the central ideas potential processes; they cannot of this model are that all matter is occur because electric charge would composed of tiny constituents called not be conserved. quarks and leptons and that inter- The Standard Model evolved to actions (or forces) between these explain both the observation of cer- particles occur through the exchange tain processes and the absence of of other particles. The Standard otherprocesses. Experimental results Model is used to make accurate quan- have sometimes led to the discovery titative predictions for many proces- of new, previously unobserved con- ses involving elementary particles, stituents of matter, and at other times from their rates of production to how to the discovery of a new rule for how fast they disintegrate. the constituents interact. The Stan- The Standard Model developed dard Model incorporates both the through a complex interplay between constituents and their interactions theoretical ideas and experimental to give a complete description of all results. It has always been con- known processes involving elemen- strained by the particles and pro- tary particles. cesses that are actually observed. At The shape puzzle (see box at left) certain times during its evolution, gives an example of static interac- the Standard Model predicted par- tions between constituents. In par- ticles or processes that had not been ticle physics we are usually studying observed yet.* Experiments were dynamic systems, in which interac- conducted, motivated in part by these tions between particles lead to a sys- predictions. The outcome of the ex- tem that changes with time. Two periments proved or disproved those particles, such as an electron and a particular aspects of the model. positron, might come together and Important constraints are also annihilate each other to create two placed on the Standard Model by new particles. A heavy particle might what is not observed-it must some- disintegrate into several lighter par- how explain why certain particles or ticles. In the Standard Model, these interactions occur through the ex- change of other particles called the *Two important examples are the weak neutral current and the charm quark, carriers or mediators of the force or both of which are discussed in the text. interaction. 2 SUMMER 1993 To understand how a force can be who recognized the correspondence mediated by a particle, consider the between the elements of these dia- analogy of two rollerbladers, gliding grams and the mathematical terms along on parallel paths, one of them that appear in calculations giving holding a ball (see illustration at the probability of a particular inter- right). When one rollerblader throws action occurring. Each line (or par- the ball at the other, she recoils ticle) in the diagram corresponds to a slightly in the opposite direction from factor in a theoretical calculation. her toss-much like a cannon re- Each point at which two lines (or coils when it fires a cannonball, only particles) meet corresponds to an- on a smaller scale. If she throws a other factor. These diagrams help ball to her left, she will receive a physicists conceptualize subatomic Particle B small kick to her right. When the processes and develop deeper insight other rollerblader catches the ball, into particle interactions. For par- a similar kick to his ticle physicists, Feynman diagrams he will receive Force-carrying for in- left. If we were to watch this interac- provide an indispensable tool Particle tion but could not see the ball being tuition, communication, and calcu- exchanged between the two, we lation. might well conclude that a repulsive Particle A force is acting between them. This QUARKS AND LEPTONS are force was actually "mediated" by particles that appear to be Interactions between subatomic the exchange of a ball, which "car- fundamental. No matter how deeply particles can be compared to what when two rollerbladers toss a force between them. we probe with the experimental happens ried" the ball between them. The effects of the The Standard Model describes the facilities available today, we see no force between the rollerbladers (or various possible interactions be- structure within them. Quarks and particles) are "carried" by the ball (or a tween particles in terms of the ex- leptons do not appear to be composed third particle). (Drawing by Bayard change of several different particles. of smaller particles. In fact, they do Colyear) The rollerblader analogy has limita- not even have a detectable size. With tions (for example, it can't be used to current accelerators, for example, explain attractive forces), but it is a physicists can tell that the diameter useful one to keep in mind. Often as of a quark is less than a millionth of you walk the halls of high-energy a millionth of a millionth of a meter! physics laboratories or glance into To put this in perspective, imagine offices of particle physicists, you will that an atom is blown up to the size see diagrams similar to the one at of the earth. Then the nucleus is bottom right on chalkboards or scraps about the size of a football field, a of paper. Instead of rollerbladers, the neutron or proton inside the nucleus lines represent the paths taken by is about the size of an automobile, quarks or leptons. Instead of balls, and a quark is smaller than a tiny you see symbolic representations of pebble! the particles mediating the interac- The word lepton comes from the tion between them. Greek root lepto, meaning "small" These schematic pictures of par- or "slender." The leptons were so- ticle interactions are called Feynman named because the first of them to diagrams, after the late Richard P. be found were very light compared to Feynman, the theoretical physicist other particles. However, much more BEAM LINE 3 massive leptons have since been two "weight classes." The middle- discovered, leading to the non- weights were called mesons and the sequitur "heavy lepton." The leptons heavyweights baryons. In the early include the first elementary particle 1960s, Gell-Mann proposed that all to show up: the familiar electron, the observed mesons and baryons discovered by the British physicist are made of three kinds of quarks, J. J. Thompson in 1897. The next which he called up, down, and lepton, discovered in 1937 in cosmic strange. He postulated that baryons rays, is a highly penetrating particle are made of three quarks and that called the muon. The third lepton, mesons are made of a quark and an discovered by Martin Perl at the antiquark (the antiparticle of a quark). Stanford Linear Accelerator Center Individual quarks are never observed in 1975, is called the tau lepton. The in Nature; they are always bound muon and the tau lepton both carry inside baryons or mesons.
Recommended publications
  • A PRIMEIRA REVISTA ELETRÔNICA BRASILEIRA EXCLUSIVA DE ASTRONOMIA Revista Macrocosm O.Com Ano II - Edição N° 14 - Janeiro De 2005
    A PRIMEIRA REVISTA ELETRÔNICA BRASILEIRA EXCLUSIVA DE ASTRONOMIA revista macroCOSM O.com Ano II - Edição n° 14 - Janeiro de 2005 Editorial Redação [email protected] Desde tempos imemoriáveis o homem tem olhado Diretor Editor Chefe para o céu. No início, a observação do movimento Hemerson Brandão [email protected] gradual dos corpos celestes ajudou aos primórdios da civilização na contagem e regularização do tempo, e por esse motivo, a Astronomia é considerada uma das Diagramadores Rodolfo Saccani ciências mais antigas da humanidade. [email protected] Foi na Antiga Grécia, por volta de 450 a.C., que os Sharon Camargo gregos começaram a fazer os primeiros registros [email protected] detalhados do movimento dos astros, tentando entender Hemerson Brandão [email protected] as suas causas. Ricas histórias mitológicas explicavam o porque de cada constelação no céu, enquanto filósofos debatiam uma explicação para o movimento Redatores Audemário Prazeres dos astros errantes, os planetas. [email protected] Atualmente parte desse conhecimento foi Hélio “Gandhi” Ferrari sobrepujado por anos de conhecimentos científicos [email protected] adquiridos ao longo da história, mas muitos resquícios Laércio F. Oliveira [email protected] ainda são encontrados na Astronomia Moderna. Os Marco Valois primeiros estudos do movimento da Terra, como por [email protected] exemplo a precessão dos equinócios, o desenho da Naelton M. Araujo maioria das constelações, a escala de magnitudes [email protected] Paulo R. Monteiro estelares e até mesmo os primeiros catálogos de [email protected] estrelas, são a herança da rica cultura grega. Sem Rosely Grégio dúvida, a base para todo o pensamento científico atual.
    [Show full text]
  • Minutes of the High Energy Physics Advisory Panel Meeting February 14-15, 2008 Palomar Hotel, Washington, D.C
    Minutes of the High Energy Physics Advisory Panel Meeting February 14-15, 2008 Palomar Hotel, Washington, D.C. HEPAP members present: Jonathan A. Bagger, Vice Chair Lisa Randall Daniela Bortoletto Tor Raubenheimer James E. Brau Kate Scholberg Patricia Burchat Melvyn J. Shochet, Chair Robert N. Cahn Sally Seidel Priscilla Cushman (Thursday only) Henry Sobel Larry D. Gladney Maury Tigner Robert Kephart William Trischuk William R. Molzon Herman White Angela V. Olinto Guy Wormser (Thursday only) Saul Perlmutter HEPAP members absent: Hiroaki Aihara Joseph Lykken Alice Bean Stephen L. Olsen Sarah Eno Also participating: Charles Baltay, Department of Physics, Yale University Barry Barish, Director, Global Design Effort, International Linear Collider William Carithers, Physics Division, Lawrence Berkeley National Laboratory Tony Chan, Assistant Director for Mathematics and Physical Sciences, National Science Foundation Glen Crawford, Program Manager, Office of High Energy Physics, Office of Science, Department of Energy Joseph Dehmer, Director, Division of Physics, National Science Foundation Persis Drell, Director, Stanford Linear Accelerator Center Thomas Ferbel, Department of Physics and Astronomy, University of Rochester Marvin Goldberg, Program Director, Division of Physics, National Science Foundation Paul Grannis, Department of Physics and Astronomy, State University of New York Michael Harrison, Physics Department, Brookhaven National Laboratory Abolhassan Jawahery, BaBar Collaboration Spokesman, Stanford Linear Accelerator Center Steve
    [Show full text]
  • Report on HEPAP Activities
    Report on HEPAP activities Mel Shochet University of Chicago 6/4/09 Fermilab Users Meeting 1 What is HEPAP? High Energy Physics Advisory Panel • Advises the DOE & NSF on the particle physics program. • Federal Advisory Committee Act rules – Public meetings – US members are Special Government Employees on meeting days. • Subject to federal conflict-of-interest rules • “Special” ⇒ paycheck = $0.00 – Appointed by DOE Under-Secretary for Science & NSF Director – Reports to Assoc. Dir. for OHEP & Asst. Dir. Math & Phys. Sciences – Broad membership: subfield, univ & labs, demographics (geography,…) • Members don’t serve as representatives of constituencies; advise on the health of the entire field. • Foreign members provide information on programs in Europe & Asia 6/4/09 Fermilab Users Meeting 2 Current Membership • Hiroaki Aihara, Tokyo • Daniel Marlow, Princeton • Marina Artuso, Syracuse • Ann Nelson, Washington • Alice Bean, Kansas • Stephen Olsen, Hawaii • Patricia Burchat, Stanford • Lisa Randall, Harvard • Priscilla Cushman, Minn. • Kate Scholberg, Duke • Lance Dixon, SLAC • Sally Seidel, New Mexico • Sarah Eno, Maryland • Melvyn Shochet, Chicago • Graciela Gelmini, UCLA • Henry Sobel, Irvine • Larry Gladney, Penn • Paris Sphicas, CERN • Boris Kayser, FNAL (DPF) • Maury Tigner, Cornell • Robert Kephart, FNAL • William Trischuk, Toronto • Steve Kettell, BNL • Herman White, FNAL • Wim Leemans, LBNL 6/4/09 Fermilab Users Meeting 3 Meetings • 3 meetings per year • Agenda – reports from the funding agencies on budgets & their impact, recent events, successes and problems – reports from specialized subpanels that need HEPAP approval to become official government documents (ex. P5) – reports from other committees that impact HEP (ex. EPP2010) – informational reports on issues that might arise in the future (ex.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Minutes High Energy Physics Advisory Panel October 22–23, 2009 Hilton Embassy Row Washington, D.C
    Draft Minutes High Energy Physics Advisory Panel October 22–23, 2009 Hilton Embassy Row Washington, D.C. HEPAP members present: Hiroaki Aihara Wim Leemans Marina Artuso Daniel Marlow Alice Bean Ann Nelson Patricia Burchat Paris Sphicas Lance Dixon Kate Scholberg Graciela Gelmini Melvyn J. Shochet, Chair Larry Gladney Henry Sobel Boris Kayser Maury Tigner Robert Kephart William Trischuk Steven Kettell Herman White HEPAP members absent: Priscilla Cushman Lisa Randall Sarah Eno Sally Seidel Stephen Olson Also participating: Barry Barish, Director, Global Design Effort, International Linear Collider Frederick Bernthal, President, Universities Research Association Glen Crawford, HEPAP Designated Federal Officer, Office of High Energy Physics, Office of Science, Department of Energy Joseph Dehmer, Director, Division of Physics, National Science Foundation Cristinel Diaconu, Directeur de Recherche, IN2P3/CNRS, France Robert Diebold, Diebold Consulting Marvin Goldberg, Program Director, Division of Physics, National Science Foundation Judith Jackson, Director, Office of Communication, Fermi National Accelerator Laboratory Young-Kee Kim, Deputy Director, Fermi National Accelerator Laboratory John Kogut, HEPAP Executive Secretary, Office of High Energy Physics, Office of Science, Department of Energy Dennis Kovar, Associate Director, Office of High Energy Physics, Office of Science, Department of Energy Kevin Lesko, Nuclear Science Division, Lawrence Berkeley National Laboratory Marsha Marsden, Office of High Energy Physics, Office of Science,
    [Show full text]
  • 01Ii Beam Line
    STA N FO RD LIN EA R A C C ELERA TO R C EN TER Fall 2001, Vol. 31, No. 3 CONTENTS A PERIODICAL OF PARTICLE PHYSICS FALL 2001 VOL. 31, NUMBER 3 Guest Editor MICHAEL RIORDAN Editors RENE DONALDSON, BILL KIRK Contributing Editors GORDON FRASER JUDY JACKSON, AKIHIRO MAKI MICHAEL RIORDAN, PEDRO WALOSCHEK Editorial Advisory Board PATRICIA BURCHAT, DAVID BURKE LANCE DIXON, EDWARD HARTOUNI ABRAHAM SEIDEN, GEORGE SMOOT HERMAN WINICK Illustrations TERRY ANDERSON Distribution CRYSTAL TILGHMAN The Beam Line is published quarterly by the Stanford Linear Accelerator Center, Box 4349, Stanford, CA 94309. Telephone: (650) 926-2585. EMAIL: [email protected] FAX: (650) 926-4500 Issues of the Beam Line are accessible electroni- cally on the World Wide Web at http://www.slac. stanford.edu/pubs/beamline. SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the policies of the Stanford Linear Accelerator Center. Cover: The Sudbury Neutrino Observatory detects neutrinos from the sun. This interior view from beneath the detector shows the acrylic vessel containing 1000 tons of heavy water, surrounded by photomultiplier tubes. (Courtesy SNO Collaboration) Printed on recycled paper 2 FOREWORD 32 THE ENIGMATIC WORLD David O. Caldwell OF NEUTRINOS Trying to discern the patterns of neutrino masses and mixing. FEATURES Boris Kayser 42 THE K2K NEUTRINO 4 PAULI’S GHOST EXPERIMENT A seventy-year saga of the conception The world’s first long-baseline and discovery of neutrinos. neutrino experiment is beginning Michael Riordan to produce results. Koichiro Nishikawa & Jeffrey Wilkes 15 MINING SUNSHINE The first results from the Sudbury 50 WHATEVER HAPPENED Neutrino Observatory reveal TO HOT DARK MATTER? the “missing” solar neutrinos.
    [Show full text]
  • LORAN-A Historic Context
    ' . Prepared by Alice Coneybeer U.S. Coast Guard, MLCP (se) Coast Guard Island, Bldg. 540 Alameda, CA 94501-5100 Phone 510.437.5804 Fax 510.437.5753 U.S. Coast Guard- Maintenance & Logistics Command Pacific • • • • • • • • • • LORAN-A Historic Context Alaska (District 17) September 1998 ENCLOSURE(2.} ( LORAN-A Context 1. TABLE OF CONTENTS 1. TABLE OF CONTENTS .........•.....................................................•......................•........•..................................•. 1 2. TECHNICAL BACKGROUND ......................................................................................................................... 2 3. IDSTORY OF LORAN-A STATIONS.............................................................................................................. 2 4. LORAN-A IN ALASKA. ..................................................................................................................................... 3 5. LORAN-A DURING THE COLD WAR IN ALASKA (1945-1989) ............................................................... 4 6. NATIONAL REGISTER ELIGffiiLITY EVALUATION .............................................................................. 4 6.1 SIGNIFICANCE OF LORAN-A WITIIIN TilE CONTEXT OF TilE DEVELOPMENT OF AIDS TONAVIGATION ............................................................................................................................... 5 6.2 SIGNIFICANCE OF LORAN-A WITIIIN TilE CONTEXT OF WORLD WAR II IN ALASKA .............. 5 6.3 SIGNIFICANCE OF LORAN-A WITIIIN TilE HISTORIC CONTEXT
    [Show full text]
  • Inhaltsverzeichnis
    Nachlass EDUARD SCHÖNFELD (1828-1891) Inhaltsverzeichnis Bearbeitet von Anne Hoffsümmer und Lea Korb Bonn, 2017 – 2018 zuletzt aktualisiert am 09.09.2020 Eduard Schönfeld wurde am 22.12.1828 in Hildburghausen geboren, wo er bis zu seinem Abitur 1847 die Schule besuchte. Er war Kind einer jüdischen Familie, trat jedoch nach seinem Schulabschluss dem evangelischen Glauben bei. Auf Anraten seines Vaters studierte Schönfeld zunächst Bauwesen, entschied sich aber nach kurzer Zeit für die Naturwissenschaften und begann, in Marburg bei dem Gauß-Schüler Christian Ludwig Gerling unter anderem Astronomie zu studieren. Nachdem Schönfeld auf einer Reise nach Bonn Bekanntschaft mit Friedrich Wilhelm August Argelander gemacht hatte, entschloss er sich, das Studium der Astronomie 1852 in Bonn fortzusetzen. Dort erhielt er schon ein Jahr später eine Stelle als Assistent, durch die er die Möglichkeit erhielt, gemeinsam mit Adalbert Krüger an der bekannten „Bonner Durchmusterung“, Argelanders großem Projekt, mitzuwirken. Mit einer Abhandlung über die Bahnelemente des Kleinplaneten Thetis promovierte Schönfeld 1854. Seine Habilitation folgte drei Jahre später. Eduard Schönfeld zog 1859 nach Mannheim, um dort die Stelle als Direktor der Mannheimer Sternwarte anzutreten. In der Mannheimer Zeit widmete er sich unter anderem der Bestimmung der Positionen von Nebelflecken mithilfe des Ringmikrometer. Eduard Schönfeld war Mitbegründer und Vorstandsmitglied der Astronomischen Gesellschaft sowie lange Jahre ihr Schriftführer und Herausgeber der Vierteljahrsschrift. Nach Argelanders Tod im Jahr 1875 übernahm Schönfeld dessen Stelle als Direktor der Bonner Sternwarte und ergänzte die Arbeit zur Bonner Durchmusterung, indem er die Bereiche -2°- -23° der südlichen Deklination erforschte. 1883 wurde er Geheimer Regierungsrat und war 1887/88 Rektor der Universität Bonn.
    [Show full text]
  • Inventing the Endless Frontier: the Effects of the World War II Research
    Inventing the Endless Frontier: The Effects of the World War II Research Effort on Post-war Innovation∗ Daniel P. Gross† Bhaven N. Sampat‡ Harvard Business School and NBER Columbia University and NBER June 2, 2020 first draft: June 2, 2020 Abstract: During World War II, the U.S. government launched an unprecedented effort to mobi- lize science for war: the newly-established Office of Scientific Research and Development (OSRD) entered thousands of R&D contracts with industrial and academic contractors, spending one to two orders of magnitude more than what the government was previously investing in science. In this pa- per, we study the long-run effects of the OSRD-supported research effort on U.S. invention. Using data on all OSRD contracts, we show that these investments had large effects on the direction and location of U.S. invention and high-tech industrial employment, setting in motion agglomeration forces which shaped the technology clusters of the postwar era. Our results demonstrate the effects of a large, mission-driven government R&D program on the growth of domestic technology clusters and long-run technological progress. JEL Classification: H56, N42, N72, O31, O32, O33, O38, R11 Keywords: World War II; Vannevar Bush; OSRD; Mission-oriented R&D; Direction of Innovation; Geography of Innovation; Technology Clusters; U.S. Innovation System ∗We thank Ashish Arora, Pierre Azoulay, Wes Cohen, Jon Gruber, Adam Jaffe, Simon Johnson, Tom Nicholas, Scott Stern, and audiences at the HBS Faculty Research Symposium and the Urban Economics Association meetings (discussant Alex Whalley) for helpful comments. We also thank Hayley Pallan, Greg Saldutte, and Innessa Colaiacovo for outstanding research assistance, and the Harvard Business School Division of Faculty and Research Development and NBER Innovation Policy grant (2016) for financial support.
    [Show full text]
  • Waveguide Handbook 1946
    WAVE GUIDE HANDBOOK 1 \L.—‘. i “; +’/ i MASSACHUSETTS INSTITUTE OF TECHNOLOGY RADIATION LABORATORY SERIES Boardof Editors LouM N. RIDENOUR, Editor-in-Chief GEORQE 13. COLLINS, Deputy Editor-in-Chief BRITTON CHANCE, S. A. GOUDSMIT, R. G. HERB, HUBERT M. JAMES, JULIAN K. KNIPP, JAMES L. LAWSON, LEON B. LINFORD, CAROL G. MONTGOMERY, C. NEWTON, ALRERT M. STONE, LouIs A. TURNER, GEORCE E. VALLEY, JR., HERBERT H. WHEATON 1. RADAR SYSTEM ENGINEERING—Ridenour 2. RADAR AIDS TO NAVIGATION-HU1l 3. RADAR BEAcoNs—RoberL9 4. LORAN—P&Ce, McKen~ie, and Woodward 5. PULSE GENERATORS<laSOe and Lebacqz 6. MICROWAVE MA~NETRoNs—Co~ks 7. KLYSTRONS AND MICROWAVE TRIoDEs—Hamalton, Knipp, and Kuper 8. PRINCIPLES OF MICROWAVE Cmcums-Montgornery, Dicke, and Purcell I 9. MICROWAVE TRANSMISSION CIRc!uITs-Ragan 10.WAVEGUIDE HANDBooK—Marcuuitz 11.TECIINIQUE OF MICROWAVE MEASUREMENTS—MOnlgO?Wry 12.MICROWAVE ANTENNA THEORY AND DEslaN—Siker 13.PROPAGATION OF SHORT RADIO WAvEs—Kerr 14.MICROWAVE DUPLEXERS—&72Ulk and Montgomery 15.CRYSTAL Rectifiers—Torrey and Whitmer 16.MICROWAVE Mxxrms—pound 17.COMPONENTS Hm’mBooK—Blackburn 18.VACUUM TUBE AWPLIFIERs—Valley and Wazlman 19.WAVEFORMS—ChanC.?, Hughes, MacNichol, Sayre, and Williams 20.ELECTRONIC TIME Measurements—Chance, Hulsizei’, MacNichol, and Williams 21.ELECTRONIC lNsTRuMENTs~reenwood, Holdam, and MacRae 22.CATHODE RAY TUBE DIsPLAYs—Soiler, ~tarr, and Valley 23.MICROWAVE RECEIVERS—Van Voorhis 24.THRESHOLD &QNALS-LaW90n and Uhlenbeck 25.THEORY OF SERvoMEcIIANIsh f-James, Nichols, and Phillips 26.RADAR SCANNERS AND RADoMEs—Cady, Karelitz, and Turner 27.COMPUTINQ MECHANISMS AND LINKA~E9—&ObOdO 28.lNDEX—Ht?nneY . LL WAVEGUIDE ~HANDBOOK Edited by N. MARCUVITZ - ASSOCIATE PROFESSOR Ok- ELECTIUC.4L ENGINEERING POLYTECHNIC INSTITUTE OF BROOKLYN OFFICE OF SCIENTIFIC REsEARCH AND DEVELOPMENT NATIONAL DEFENSE RESEARCH COMMITTEE FIRST EDITION NEW YORK .
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]
  • Reflector March 2021 Final Pages.Pdf
    Published by the Astronomical League Vol. 73, No. 2 MARCH 2021 CELEBRITY VARIABLE STARS IMAGING TECHNIQUES EXPLAINED 75th WILLIAMINA FLEMING SIMPLE CITIZEN SOLAR SCIENCE AN EMPLOYEE-OWNED COMPANY NEW FREE SHIPPING on order of $75 or more & INSTALLMENT BILLING on orders over $350 PRODUCTS Standard Shipping. Some exclusions apply. Exclusions apply. Orion® StarShoot™ Mini 6.3mp Imaging Cameras (sold separately) Orion® StarShoot™ G26 APS-C Orion® GiantView™ BT-100 ED Orion® EON 115mm ED Triplet Awesome Autoguider Pro Refractor Color #51883 $400 Color Imaging Camera 90-degree Binocular Telescope Apochromatic Refractor Telescope Telescope Package Mono #51884 $430 #51458 $1,800 #51878 $2,600 #10285 $1,500 #20716 $600 Trust 2019 Proven reputation for Orion® U-Mount innovation, dependability and and Paragon Plus service… for over 45 years! XHD Package #22115 $600 Superior Value Orion® StarShoot™ Deep Space High quality products at Orion® StarShoot™ G21 Deep Space Imaging Cameras (sold separately) Orion® 120mm Guide Scope Rings affordable prices Color Imaging Camera G10 Color #51452 $1,200 with Dual-Width Clamps #54290 $950 G16 Mono #51457 $1,300 #5442 $130 Wide Selection Extensive assortment of award winning Orion brand 2019 products and solutions Customer Support Orion products are also available through select Orion® MagneticDobsonian authorized dealers able to Counterweights offer professional advice and Orion® Premium Linear Orion® EON 130mm ED Triplet Orion® 2x54 Ultra Wide Angle 1-Pound #7006 $25 Binoculars post-purchase support BinoViewer
    [Show full text]