FALL 1987 Ulletin No. 45 MILTON A. SURLES

Total Page:16

File Type:pdf, Size:1020Kb

FALL 1987 Ulletin No. 45 MILTON A. SURLES AYLOR FALL 1987 ulletin No. 45 Stratigraphy ofthe Eagle Ford Group (Upper Cretaceous) and Its Source-Rock Potential in the East Texas Basin MILTON A. SURLES, JR. ~~Creative thinking is more important than elaborate equipment--" FRANK CARNEY, PH.D. PROFESSOR OF GEOLOGY BAYLOR GEOLOGICAL STUDIES BAYLOR UNIVERSITY 1929-1934 BULLETIN NO. 45 Objectives of Geological Training at Baylor Stratigraphy of the Eagle Ford Group The training of a geologist in a university covers but a few years; his education continues (Upper Cretaceous) and Its throughout his active life. The purposes of train­ ing geologists at Baylor University are to provide Source-Rock Potential in a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued the East Texas Basin professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in­ cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring ob­ jective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the departmen1. Milton A. Surles, Jr. Cover: Limestone beds near the top of the Lake Waco Formation. BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring 1987 THE BAYLOR PRINTING SERVICE WACO, TEXAS , :~.~ j CONTENTS Page Abstract .............................................................. 5 Baylor Geological Studies Introduction•............••...................•........................ 5 Purpose. • . .. 5 EDITORIAL STAFF Location. • . • . • . .. 6 Methods .. • . • . .. 6 Janet L. Burton, Editor Previous Works . • • . • . .. 6 Acknowledgments . •. 7 O. T. Hayward, Ph.D., Advisor. Cartographic Editor general and urban geology and what have you Descriptive Geology . • . • . • . .. 7 Regional Stratigraphy. • . • . .. 7 Joe C. Yelderman, Jr., Ph.D., Associate Editor East Texas. • . • . • . .. 7 hydrogeology Eastern Gulf Coast Basin .................................•...... 7 Southwest Texas, Mexico, and West Texas ......................... 8 Peter M. Allen, Ph.D. Western Interior. • . • . .. 8 urban and environmental geology. hydrology Summary .....•..................................•...•......... 8 Eagle Ford Group ............•..........•...........................9 Harold H. Beaver, Ph.D. Lithology. • . • . .. 9 stratigraphy, petroleum geology Stratigraphic contacts .........................................•. 9 Distribution and thickness ....................................... 9 Rena Bonem, Ph.D. Tarrant Sandy Clay ..•........•................................. II paleontology, paleoecology Lithology ...................................•...............II William Brown, Ph.D. Stratigraphic contacts ...................................•.....II structural tectonics Distribution and thickness .............•.......................II Britton Clay...........................••.......................II Thomas Goforth, Ph.D. Lithology .............................•.....................II geophysics Stratigraphic contacts .•.......................................20 Distribution and thickness •........•...........................20 Robert C. Grayson, Ph.D. Arcadia Park Shale .....•..............................•.....•..20 stratigraphy, conodont biostratigraphy Lithology ......................................•.....•.....•20 and sedimentary petrology , Stratigraphic contacts ........•......•......................•..21 Distribution and thickness ...••.........•......................21 Don M. Greene, Ph.D. physical geography, climatology, Sub-Clarksville Sand ....................•.......................21 earth sciences Lithology ..••.....•.........................................21 Stratigraphic contacts .........................•...............26 Don F. Parker, Ph.D. Distribution and thickness ......••.....•..••...................26 igneous geology, volcanology, Summary .....•.....................••....................•....26 mineralogy, petrology Depositional Model ...........................................•........26 Pre-Eagle Ford Time•...................•......•....................26 STUDENT EDITORIAL STAFF Tarrant Deposition .................................................27 Britton Deposition ....•..............................•..............28 Todd Boring, Cartographer Arcadia Park Deposition .•..••..........•...•.......................30 Sub-Clarksville Deposition ..........................................31 The Baylor Geological Studies Bulletin is published Summary •...........................................•............31 by the Department of Geology at Baylor University. Source-rock Potential of the Eagle Ford Rocks in the East Texas Basin ........31 The Bulletin is specifically dedicated to the dissemination , Petroleum Potential of Eagle Ford Rocks in the East Texas Basin .............37 of geologic knowledge for the benefit of the people of Tarrant Exploration Fairway .......•.....•.....•........•.........•..37 Texas. The publication is designed to present the results Britton Exploration Fairway ........................•............... .43 of both pure and applied research which will ultimately Arcadia Park Exploration Fairway •...............•...................43 be important in the economic and cultural growth of Sub-Clarksville Exploration Fairway ..................................43 the State. ~I, Optimal Eagle Ford Exploration Faifways ..........•...........••.... .43 ISSN 0005-7266 Conclusions .........•..•..........................•...................44 Appendix I ..........................•........................•......•.44 Additional copies of this bulletin can be obtained from Appendix II .......•............................•...•.............•....45 the Department of Geology, Baylor University, Waco, Appendix III ...........•.......................................•......49 Texas 76798. $1.05 postpaid. Appendix IV .......•.....................•......•...................••55 References .•................................................•.....•...56 Index...............................................•.................57 ILLUSTRATIONS Stratigraphy of the Eagle Ford Group Fig. Page 1. Index Map of the East Texas Basin ................................... 6 (Upper Cretaceous) and Its 2. Stratigraphic Column for the Upper Cretaceous Eagle Ford Group and Surrounding Strata ............................. 6 Source-Rock Potential in 3. Stratigraphic Correlation Chart of the Eagle Ford Equivalents in North America ........................................ 8 the East Texas Basin 4. Well 23, Bend Oil Corp. #1 Albowitch ..................................9 , 5. Isopach Map of the Eagle Ford Group ................................. 10 6. North to South Stratigraphic Cross Sections D to D' Through F to F' .................................................... 12 7. West to East Stratigraphic Cross Sections A to A' Through C to C' .................................................... 14 8. Isopach Map of the Tarrant Sandy Clay ............................... 16 Milton A. Surles, Jr. 9. Sand Isolith of the Tarrant. .......................................... 17 10. Isopath Map of the Britton Clay ...................................... 18 II. Sand Isolith of the Britton Clay ....................................... 19 12. Isopach Map of the Arcadia Park Shale ...............................22 13. Sand Isolith of the Arcadia Park Shale ................................23 14. Isopach Map of the Sub-Clarksville Sand ..............................24 IS. Sand Isolith of Sub-Clarksville Rocks .................................25 ABSTRACT 16. Regional Setting of the East Texas Basin During The Eagle Ford Group, of the upper Cretaceous Tarrant Deposition .................................................27 of dark gray, blocky shales, named the South Bosque Gulfian Series, is one of the most stratigraphically Formation. 17. Regional Setting of the East Texas Basin During complex clastic-dominated units in the East Texas basin. Geochemical analysis of Eagle Ford rocks throughout Britton Deposition ..................................................28 At the type locality in Dallas County, Texas, the Eagle the East Texas basin indicates that the Eagle Ford Shales 18. Regional Setting of the East Texas Basin During Ford consists of bluish-black, carbonaceous sediments are organically rich enough to be considered superior Arcadia Park Deposition ............................................29 ) exceeding 400 feet in thickness. In this area, the Eagle source-rocks for some of the petroleum found in Austin, 19. Regional Setting of the East Texas Basin During Ford includes the Tarrant (15 to 20 feet of brownish­ Eagle Ford, Woodbine, and Buda aged reservoirs. Sub-Clarksville Deposition ...........................................30 gray calcareous sandstone), the Britton (250 to 300 feet Within the petroleum generative province of East Texas, 20. Total Organic Carbon Isopleth, Eagle Ford, of interbedded brown calcareous mudstone), and the the Eagle Ford could have generated approximately 400 East Texas Basin ...................................................32 Arcadia Park Formations (100 to 200 feet of dark gray billion barrels of oil. calcareous mudstone). 21. Total Organic Carbon Isopleth, Lower Eagle Ford, Significant petroleum reserves have been produced Eastward into the basin,
Recommended publications
  • The Petroleum Potential of H Serpentine Plugs" and Associated Rocks, Central and South Texas
    BAYLOR FALL 1986 ulletin No. 44 The Petroleum Potential of H Serpentine Plugs" and Associated Rocks, Central and South Texas TRUITT F. MATTHEWS Baylor Geological Studies EDITORIAL STAFF Jean M. Spencer Jenness, M.S., Ed.ttpr environmental and medical geology CONTENTS Page O. T. Hayward, Ph.D., Advisor. Cartographic Editor Abstract .............................................................. 5 general and urban geology and what have you Introduction. .. 5 Peter M. Allen, Ph.D. Purpose ........................................................... 5 urban and environmental geology, hydrology Location .......................................................... 6 Methods .......................................................... 6 Harold H. Beaver, Ph.D. Previous works. .. 7 stratigraphy, petroleum geology Acknowledgments .................................................. 11 Regional setting of "serpentine plugs" ..................................... 11 Rena Bonem, Ph.D. Descriptive geology of "serpentine plugs" .................................. 12 paleontology, paleoecology Northern subprovince ............................................... 13 Middle subprovince ................................................. 15 William Brown, M.S. Southern subprovince ............................................... 18 structural tectonics Origin and history of "serpentine plugs" ................................... 26 Robert C. Grayson, Ph.D. Production histories of "serpentine plugs" ................................. 30 stratigraphy, conodont biostratigraphy
    [Show full text]
  • SPRING 1963 Bulletin 4 BURR A. SILVER
    SPRING 1963 Bulletin 4 The Bluehonnet Lake Waco Formation {Upper Central Lagoonal Deposit BURR A. SILVER thinking is more important than elaborate equipment-" Frank Carney, Ph.D. Professor of Geology Baylor University 1929-1934 Objectives of Geological at Baylor The of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of training geologists at Baylor University are to provide a sound basis of un­ derstanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research including that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring objective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. PRESS WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 4 The Member, Lake Waco Formation {Upper Central Texas - - A Lagoonal Deposit BURR A. SILVER BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring, 1963 Baylor Geological Studies EDITORIAL STAFF F. Brown, Jr., Ph.D., Editor stratigraphy, paleontology O. T. Hayward, Ph.D., Adviser stratigraphy-sedimentation, structure, geophysics-petroleum, groundwater R. M. A., Business Manager archeology, geomorphology, vertebrate paleontology James W. Dixon, Jr., Ph.D. stratigraphy, paleontology, structure Walter T. Huang, Ph.D. mineralogy, petrology, metallic minerals Jean M. Spencer, B.S., Associate Editor Bulletin No. 4 The Baylor Geological Studies Bulletin is published Spring and Fall, by the Department of Geology at Baylor University.
    [Show full text]
  • Evaluation of the Depositional Environment of the Eagle Ford
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas Zachary Paul Hendershott Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Hendershott, Zachary Paul, "Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas" (2012). LSU Master's Theses. 863. https://digitalcommons.lsu.edu/gradschool_theses/863 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. EVALUATION OF THE DEPOSITIONAL ENVIRONMENT OF THE EAGLE FORD FORMATION USING WELL LOG, SEISMIC, AND CORE DATA IN THE HAWKVILLE TROUGH, LASALLE AND MCMULLEN COUNTIES, SOUTH TEXAS A Thesis Submitted to the Graduate Faculty of the Louisiana State University Agricultural and Mechanical College in partial fulfillment of the requirements for degree of Master of Science in The Department of Geology and Geophysics by Zachary Paul Hendershott B.S., University of the South – Sewanee, 2009 December 2012 ACKNOWLEDGEMENTS I would like to thank my committee chair and advisor, Dr. Jeffrey Nunn, for his constant guidance and support during my academic career at LSU.
    [Show full text]
  • Eagle Ford Group and Associated Cenomanian–Turonian Strata, U.S
    U.S. Gulf Coast Petroleum Systems Project Assessment of Undiscovered Oil and Gas Resources in the Eagle Ford Group and Associated Cenomanian–Turonian Strata, U.S. Gulf Coast, Texas, 2018 Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 8.5 billion barrels of oil and 66 trillion cubic feet of gas in continuous accumulations in the Upper Cretaceous Eagle Ford Group and associated Cenomanian–Turonian strata in onshore lands of the U.S. Gulf Coast region, Texas. −102° −100° −98° −96° −94° −92° −90° EXPLANATION Introduction 32° LOUISIANA Eagle Ford Marl The U.S. Geological Survey (USGS) Continuous Oil AU TEXAS assessed undiscovered, technically MISSISSIPPI Submarine Plateau-Karnes Trough Continuous Oil AU recoverable hydrocarbon resources in Cenomanian–Turonian self-sourced continuous reservoirs of 30° Mudstone Continuous Oil AU the Upper Cretaceous Eagle Ford Group Eagle Ford Marl Continuous and associated Cenomanian–Turonian Gas AU Submarine Plateau–Karnes strata, which are present in the subsurface Trough Continuous Gas AU 28° across the U.S. Gulf Coast region, Texas Cenomanian–Turonian Mudstone Continuous (fig. 1). The USGS completes geology- GULF OF MEXICO Gas AU based assessments using the elements Cenomanian–Turonian 0 100 200 MILES Downdip Continuous of the total petroleum system (TPS), 26° Gas AU 0 100 200 KILOMETERS which include source rock thickness, MEXICO NM OK AR TN GA organic richness, and thermal maturity for MS AL self-sourced continuous accumulations. Base map from U.S. Department of the Interior National Park Service TX LA FL Assessment units (AUs) within a TPS Map are defined by strata that share similar Figure 1.
    [Show full text]
  • Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
    Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs.
    [Show full text]
  • Mollusks from the Pepper Shale Member of the Woodbine Formation Mclennan County, Texas
    Mollusks From the Pepper Shale Member of the Woodbine Formation McLennan County, Texas GEOLOGICAL SURVEY PROFESSIONAL PAPER 243-E Mollusks From the Pepper Shale Member of the Woodbine Formation McLennan County, Texas By LLOYD WILLIAM STEPHENSON SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1952, PAGES 57-68 GEOLOGICAL SURVEY PROFESSIONAL PAPER 243-E Descriptions and illustrations of new species offossils of Cenomanian age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1953 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page Abstract________________________________________________________________ 57 Historical sketch__-___-_-__--__--_l________________-__-_-__---__--_-______ 57 Type section of the Pepper shale member.____________________________________ 58 Section of Pepper shale at Haunted Hill._______________-____-__-___---_------- 58 Systematic descriptions._______.._______________-_-__-_-_-____---__-_-_-_----_ 59 Pelecypoda_ ________________________________________________________ 59 Gastropoda.______-____-_-_____________--_____-___--__-___--__-______ 64 Cephalopoda-_______-_______________________-___--__---_---_-__-— 65 References......___________________________________________________________ 65 Index.__________________________________________________ 67 ILLUSTRATIONS Plate 13. Molluscan fossils, mainly from the Pepper shale__________
    [Show full text]
  • Mapping Lower Austin Chalk Secondary Porosity Using Modern
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2018 Mapping Lower Austin Chalk Secondary Porosity Using Modern 3-D Seismic and Well Log Methods in Zavala County, Texas David Kilcoyne University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Kilcoyne, David, "Mapping Lower Austin Chalk Secondary Porosity Using Modern 3-D Seismic and Well Log Methods in Zavala County, Texas" (2018). Theses and Dissertations. 2835. http://scholarworks.uark.edu/etd/2835 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Mapping Lower Austin Chalk Secondary Porosity Using Modern 3-D Seismic and Well Log Methods in Zavala County, Texas A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by David Joseph Kilcoyne University College Cork Bachelor of Science in Geoscience, 2016 August 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ____________________________________ Christopher L. Liner, PhD Thesis Director ____________________________________ ___________________________________ Thomas A. McGilvery, PhD Robert Liner, M.S. Committee Member Committee Member Abstract Establishing fracture distribution and porosity trends is key to successful well design in a majority of unconventional plays. The Austin Chalk has historically been referred to as an unpredictable producer due to high fracture concentration and lateral variation in stratigraphy, however recent drilling activity targeting the lower Austin Chalk has been very successful.
    [Show full text]
  • Late Cretaceous and Tertiary Burial History, Central Texas 143
    A Publication of the Gulf Coast Association of Geological Societies www.gcags.org L C T B H, C T Peter R. Rose 718 Yaupon Valley Rd., Austin, Texas 78746, U.S.A. ABSTRACT In Central Texas, the Balcones Fault Zone separates the Gulf Coastal Plain from the elevated Central Texas Platform, comprising the Hill Country, Llano Uplift, and Edwards Plateau provinces to the west and north. The youngest geologic for- mations common to both regions are of Albian and Cenomanian age, the thick, widespread Edwards Limestone, and the thin overlying Georgetown, Del Rio, Buda, and Eagle Ford–Boquillas formations. Younger Cretaceous and Tertiary formations that overlie the Edwards and associated formations on and beneath the Gulf Coastal Plain have no known counterparts to the west and north of the Balcones Fault Zone, owing mostly to subaerial erosion following Oligocene and Miocene uplift during Balcones faulting, and secondarily to updip stratigraphic thinning and pinchouts during the Late Cretaceous and Tertiary. This study attempts to reconstruct the burial history of the Central Texas Platform (once entirely covered by carbonates of the thick Edwards Group and thin Buda Limestone), based mostly on indirect geological evidence: (1) Regional geologic maps showing structure, isopachs and lithofacies; (2) Regional stratigraphic analysis of the Edwards Limestone and associated formations demonstrating that the Central Texas Platform was a topographic high surrounded by gentle clinoform slopes into peripheral depositional areas; (3) Analysis and projection
    [Show full text]
  • Theory and Perspective on Stimulation of Unconventional Tight
    Theory and Perspective on Stimulation of Unconventional Tight Oil Reservoir in China Zhifeng Luo Professor National key Laboratory of Oil and Gas Reservoir and Exploitation; College of Oil and Gas Engineering, Southwest Petroleum University, Chengdu 610500, China; e-mail: [email protected] Yujia Gao∗ Postgraduate College of Oil and Gas Engineering, Southwest Petroleum University,Chengdu 610500, China; e-mail:[email protected] Liqiang Zhao Professor National key Laboratory of Oil and Gas Reservoir and Exploitation; College of Oil and Gas Engineering, Southwest Petroleum University,Chengdu 610500, China; e-mail: [email protected] Pingli Liu Professor National key Laboratory of Oil and Gas Reservoir and Exploitation; College of Oil and Gas Engineering, Southwest Petroleum University,Chengdu 610500, China; e-mail: [email protected] Nianyin Li Professor National key Laboratory of Oil and Gas Reservoir and Exploitation; College of Oil and Gas Engineering, Southwest Petroleum University, Chengdu 610500, China; e-mail: [email protected] ABSTRACT China has tremendous unconventional tight oil resources which are widely distributed in lots of petroliferous basin. However, compared with North American, all the tight oil reservoirs discovered in China has its own characteristics including continental sedimentation, interbeded formation, worse reservoir physical properties and less oil reserves per unit volume, which make it much harder to stimulate. Based on thorough analysis of successful stimulation experiences in North American, taking the characteristic of China’s tight oil reservoir into consideration, this article emphasized that increasing stimulated volume must be paid attention to, what’s more, integrated fracturing technology must be adopted into tight oil reservoir stimulation to promote both production and recovery efficiency.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • An Early Bothremydid from the Arlington Archosaur Site of Texas Brent Adrian1*, Heather F
    www.nature.com/scientificreports OPEN An early bothremydid from the Arlington Archosaur Site of Texas Brent Adrian1*, Heather F. Smith1, Christopher R. Noto2 & Aryeh Grossman1 Four turtle taxa are previously documented from the Cenomanian Arlington Archosaur Site (AAS) of the Lewisville Formation (Woodbine Group) in Texas. Herein, we describe a new side-necked turtle (Pleurodira), Pleurochayah appalachius gen. et sp. nov., which is a basal member of the Bothremydidae. Pleurochayah appalachius gen. et sp. nov. shares synapomorphic characters with other bothremydids, including shared traits with Kurmademydini and Cearachelyini, but has a unique combination of skull and shell traits. The new taxon is signifcant because it is the oldest crown pleurodiran turtle from North America and Laurasia, predating bothremynines Algorachelus peregrinus and Paiutemys tibert from Europe and North America respectively. This discovery also documents the oldest evidence of dispersal of crown Pleurodira from Gondwana to Laurasia. Pleurochayah appalachius gen. et sp. nov. is compared to previously described fossil pleurodires, placed in a modifed phylogenetic analysis of pelomedusoid turtles, and discussed in the context of pleurodiran distribution in the mid-Cretaceous. Its unique combination of characters demonstrates marine adaptation and dispersal capability among basal bothremydids. Pleurodira, colloquially known as “side-necked” turtles, form one of two major clades of turtles known from the Early Cretaceous to present 1,2. Pleurodires are Gondwanan in origin, with the oldest unambiguous crown pleurodire dated to the Barremian in the Early Cretaceous2. Pleurodiran fossils typically come from relatively warm regions, and have a more limited distribution than Cryptodira (hidden-neck turtles)3–6. Living pleurodires are restricted to tropical regions once belonging to Gondwana 7,8.
    [Show full text]
  • U.S. Geological Survey Fact Sheet 2020-3045
    U.S. Gulf Coast Petroleum Systems Project Assessment of Undiscovered Oil and Gas Resources in the Upper Cretaceous Austin Chalk and Tokio and Eutaw Formations, U.S. Gulf Coast, 2019 Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 6.9 billion barrels of oil and 41.5 trillion cubic feet of natural gas in conventional and continuous accumulations in the Upper Cretaceous Austin Chalk and Tokio and Eutaw Formations onshore and in State waters of the U.S. Gulf Coast region. Introduction Geologic Models for Assessment The U.S. Geological Survey (USGS) assessed undiscovered, The Austin Chalk, consisting of both chalk and marl, was technically recoverable oil and gas in the Upper Cretaceous deposited on a broad, low-relief marine shelf that deepened to the (Coniacian–Santonian) Austin Chalk and Tokio and Eutaw Forma- south and west during the Coniacian–Santonian marine transgression. tions in the subsurface of the Gulf Coast from southern Texas to Landward, to the northeast, the Austin Chalk transitions into sandstone the Florida Panhandle. The Austin Chalk and related stratigraphic and mudstone of the Tokio Formation in Arkansas and Louisiana and the units present onshore and in State waters of the U.S. Gulf Coast Eutaw Formation in Mississippi and Alabama. The Tokio and Eutaw region are part of the Upper Jurassic–Cretaceous–Tertiary Composite Formations were deposited in shallow to marginal marine depositional Total Petroleum System (TPS) (Condon and Dyman, 2006). environments at the leading edge of the marine transgression. The source of hydrocarbons in Austin Chalk, Tokio, and Eutaw reservoirs 100° 98° 96° 94° 92° 90° 88° 86° varies spatially throughout the onshore Gulf Coast.
    [Show full text]