Analysis of the Difference Between the Euclidean Distance and the Actual Road Distance in Brazil
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Potential Impacts of the Port of Salvador Improvements on the Brazilian Cotton Industry
International Journal of Food and Agricultural Economics ISSN 2147-8988 Vol. 3 No. 1, (2015), pp. 45-61 THE POTENTIAL IMPACTS OF THE PORT OF SALVADOR IMPROVEMENTS ON THE BRAZILIAN COTTON INDUSTRY Rafael Costa Texas A&M University, Department of Agricultural Economics, College Station, Texas, USA, Email: [email protected] Parr Rosson Texas A&M University, Department of Agricultural Economics, College Station, Texas, USA. Ecio de Farias Costa Universidade Federal de Pernambuco, Departamento de Economia, Recife, Pernambuco, Brasil. Abstract A spatial price equilibrium model of the international cotton sector was used to analyze the impacts of the Port of Salvador improvements on the Brazilian cotton industry and world cotton trade. The port of Salvador is undergoing relevant improvements in its facilities and physical structure. As a result of these improvements, the port of Salvador is expected to become more competitive and attract ocean shipping companies which are willing to export products directly to Asian importing markets. Scenarios with different reduction in export cost for the port of Salvador were examined. For all scenarios, the new direct ocean shipping lines were found to be important for the cotton exporters in Brazil, especially for the producers in the state of Bahia. In addition, results suggested that the state of Bahia would have the potential of becoming the largest cotton exporting state in Brazil. Keywords: Cotton, international trade, Brazil, spatial equilibrium model, transportation 1. Introduction and Background In the 18th century, cotton was introduced in Brazil in the Northeastern region of the country. As the Southeastern region of the country started to industrialize in late 1800’s, the textile industry followed and eventually cotton cultivation was solidified in the states of São Paulo and Paraná. -
Euclidean Space - Wikipedia, the Free Encyclopedia Page 1 of 5
Euclidean space - Wikipedia, the free encyclopedia Page 1 of 5 Euclidean space From Wikipedia, the free encyclopedia In mathematics, Euclidean space is the Euclidean plane and three-dimensional space of Euclidean geometry, as well as the generalizations of these notions to higher dimensions. The term “Euclidean” distinguishes these spaces from the curved spaces of non-Euclidean geometry and Einstein's general theory of relativity, and is named for the Greek mathematician Euclid of Alexandria. Classical Greek geometry defined the Euclidean plane and Euclidean three-dimensional space using certain postulates, while the other properties of these spaces were deduced as theorems. In modern mathematics, it is more common to define Euclidean space using Cartesian coordinates and the ideas of analytic geometry. This approach brings the tools of algebra and calculus to bear on questions of geometry, and Every point in three-dimensional has the advantage that it generalizes easily to Euclidean Euclidean space is determined by three spaces of more than three dimensions. coordinates. From the modern viewpoint, there is essentially only one Euclidean space of each dimension. In dimension one this is the real line; in dimension two it is the Cartesian plane; and in higher dimensions it is the real coordinate space with three or more real number coordinates. Thus a point in Euclidean space is a tuple of real numbers, and distances are defined using the Euclidean distance formula. Mathematicians often denote the n-dimensional Euclidean space by , or sometimes if they wish to emphasize its Euclidean nature. Euclidean spaces have finite dimension. Contents 1 Intuitive overview 2 Real coordinate space 3 Euclidean structure 4 Topology of Euclidean space 5 Generalizations 6 See also 7 References Intuitive overview One way to think of the Euclidean plane is as a set of points satisfying certain relationships, expressible in terms of distance and angle. -
Madre De Deus - Ingles 7/5/06 3:55 PM Page 1
10 - Madre de Deus - ingles 7/5/06 3:55 PM Page 1 PORT INFORMATION Terminal MADRE DE DEUS 1ª edition 10 - Madre de Deus - ingles 7/5/06 3:55 PM Page 2 10 - Madre de Deus - ingles 7/5/06 3:55 PM Page 3 1 INTRODUCTION, p. 5 2 DEFINITIONS, p. 7 UMMARY 3 CHARTS AND REFERENCE DOCUMENTS, p. 9 3.1 Nautical Charts, p. 9 S 3.2 Other Publications – Brazil (DHN), p. 10 4 DOCUMENTS AND INFORMATION EXCHANGE, p. 11 5 DESCRIPTION OF THE PORT AND ANCHORAGE AREA, p. 13 5.1 General description of the Terminal, p. 13 5.2 Location, p. 14 5.3 Approaching the Todos os Santos Bay and the Terminal, p. 14 5.4 Environmental Factors, p. 23 5.5 Navigation Restrictions in the Access Channel, p. 25 5.6 Area for Ship Maneuvers, p. 27 6 DESCRIPTION OF THE TERMINAL, p. 31 6.1 General description, p. 31 6.2 Physical details of the Berths, p. 32 6.3 Berthing and Mooring Arrangements, p. 32 6.4 Berth features for Loading, Discharging and Bunker, p. 37 6.5 Berthing and LaytimeManagement and Control, p. 40 6.6 Major Risks to Berthing and Laytime, p. 40 10 - Madre de Deus - ingles 7/5/06 3:55 PM Page 4 7 PROCEDURES, p. 41 7.1 Before Arrival, p. 41 7.2 Arrival, p. 41 7.3 Berthing, p. 43 7.4 Before Cargo Transfer, p. 44 7.5 Cargo Transfer, p. 46 7.6 Cargo Measurement and Documentation, p. 47 7.7 Unberthing and Leaving Port, p. -
Distance Between Points on the Earth's Surface
Distance between Points on the Earth's Surface Abstract During a casual conversation with one of my students, he asked me how one could go about computing the distance between two points on the surface of the Earth, in terms of their respective latitudes and longitudes. This is an interesting exercise in spherical coordinates, and relates to the so-called haversine. The calculation of the distance be- tween two points on the surface of the Spherical coordinates Earth proceeds in two stages: (1) to z compute the \straight-line" Euclidean x=Rcosθcos φ distance these two points (obtained by y=Rcosθsin φ R burrowing through the Earth), and (2) z=Rsinθ to convert this distance to one mea- θ y sured along the surface of the Earth. φ Figure 1 depicts the spherical coor- dinates we shall use.1 We orient this coordinate system so that x Figure 1: Spherical Coordinates (i) The origin is at the Earth's center; (ii) The x-axis passes through the Prime Meridian (0◦ longitude); (iii) The xy-plane contains the Earth's equator (and so the positive z-axis will pass through the North Pole) Note that the angle θ is the measurement of lattitude, and the angle φ is the measurement of longitude, where 0 ≤ φ < 360◦, and −90◦ ≤ θ ≤ 90◦. Negative values of θ correspond to points in the Southern Hemisphere, and positive values of θ correspond to points in the Northern Hemisphere. When one uses spherical coordinates it is typical for the radial distance R to vary; however, in our discussion we may fix it to be the average radius of the Earth: R ≈ 6; 378 km: 1What is depicted are not the usual spherical coordinates, as the angle θ is usually measure from the \zenith", or z-axis. -
LAB 9.1 Taxicab Versus Euclidean Distance
([email protected] LAB 9.1 Name(s) Taxicab Versus Euclidean Distance Equipment: Geoboard, graph or dot paper If you can travel only horizontally or vertically (like a taxicab in a city where all streets run North-South and East-West), the distance you have to travel to get from the origin to the point (2, 3) is 5.This is called the taxicab distance between (0, 0) and (2, 3). If, on the other hand, you can go from the origin to (2, 3) in a straight line, the distance you travel is called the Euclidean distance, or just the distance. Finding taxicab distance: Taxicab distance can be measured between any two points, whether on a street or not. For example, the taxicab distance from (1.2, 3.4) to (9.9, 9.9) is the sum of 8.7 (the horizontal component) and 6.5 (the vertical component), for a total of 15.2. 1. What is the taxicab distance from (2, 3) to the following points? a. (7, 9) b. (–3, 8) c. (2, –1) d. (6, 5.4) e. (–1.24, 3) f. (–1.24, 5.4) Finding Euclidean distance: There are various ways to calculate Euclidean distance. Here is one method that is based on the sides and areas of squares. Since the area of the square at right is y 13 (why?), the side of the square—and therefore the Euclidean distance from, say, the origin to the point (2,3)—must be ͙ෆ13,or approximately 3.606 units. 3 x 2 Geometry Labs Section 9 Distance and Square Root 121 © 1999 Henri Picciotto, www.MathEducationPage.org ([email protected] LAB 9.1 Name(s) Taxicab Versus Euclidean Distance (continued) 2. -
Ice in the Tropics: the Export of ‘Crystal Blocks of Yankee Coldness’ to India and Brazil
Ice in the Tropics: the Export of ‘Crystal Blocks of Yankee Coldness’ to India and Brazil Marc W. Herold * Abstract. The Boston natural ice trade thrived during 1830-70 based upon Frederic Tudor’s idea of combining two useless products – natural winter ice in New England ponds and sawdust from Maine’s lumber mills. Tudor ice was exported extensively to the tropics from the West Indies to Brazil and the East Indies as well as to southern ports of the United States. In tropical ice ports, imported natural ice was a luxury product, e.g., serving to chill claret wines (Calcutta), champagne (Havana and Manaus), and mint juleps (New Orleans and Savannah) and used in luxury hotels or at banquets. In the temperate United States, natural ice was employed to preserve foods (cold storage) and to cool water (Americans’ peculiar love of ice water). In both temperate and tropical regions natural ice found some use for medicinal purposes (to calm fevers). With the invention of a new technology to manufacture artificial ice as part of the Industrial Revolution, the natural ice export trade dwindled as import substituting industrialization proceeded in the tropics. By the turn of the twentieth century, ice factories had been established in half a dozen Brazilian port cities. All that remained of the once extensive global trade in natural ice was a sailing ship which docked in Rio Janeiro at Christmas time laden with ice and apples from New England. Key words : natural ice export, nineteenth century globalization, artificial ice industry, luxury consumption, commodity chain. * MARC W. -
SCALAR PRODUCTS, NORMS and METRIC SPACES 1. Definitions Below, “Real Vector Space” Means a Vector Space V Whose Field Of
SCALAR PRODUCTS, NORMS AND METRIC SPACES 1. Definitions Below, \real vector space" means a vector space V whose field of scalars is R, the real numbers. The main example for MATH 411 is V = Rn. Also, keep in mind that \0" is a many splendored symbol, with meaning depending on context. It could for example mean the number zero, or the zero vector in a vector space. Definition 1.1. A scalar product is a function which associates to each pair of vectors x; y from a real vector space V a real number, < x; y >, such that the following hold for all x; y; z in V and α in R: (1) < x; x > ≥ 0, and < x; x > = 0 if and only if x = 0. (2) < x; y > = < y; x >. (3) < x + y; z > = < x; z > + < y; z >. (4) < αx; y > = α < x; y >. n The dot product is defined for vectors in R as x · y = x1y1 + ··· + xnyn. The dot product is an example of a scalar product (and this is the only scalar product we will need in MATH 411). Definition 1.2. A norm on a real vector space V is a function which associates to every vector x in V a real number, jjxjj, such that the following hold for every x in V and every α in R: (1) jjxjj ≥ 0, and jjxjj = 0 if and only if x = 0. (2) jjαxjj = jαjjjxjj. (3) (Triangle Inequality for norm) jjx + yjj ≤ jjxjj + jjyjj. p The standard Euclidean norm on Rn is defined by jjxjj = x · x. -
Cartesian Coordinate System
Cartesian coordinate system A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the signed distances from the point to two fixed perpendicular directed lines, measured in the same unit of length. Each reference line is called a coordinate axis or just axis of the system, and the point where they meet is its origin, usually at ordered pair (0, 0). The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin. Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2, 3) in green, (−3, 1) in red, (−1.5, −2.5) in blue, and the origin (0, 0) in purple. Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is (x − a)2 + (y − b)2 = r2 where a and b are the coordinates of the center (a, b) and r is the radius. Distance between two points The Euclidean distance between two points of the plane with Cartesian coordinates and is This is the Cartesian version of Pythagoras's theorem. In three-dimensional space, the distance between points and is which can be obtained by two consecutive applications of Pythagoras' theorem. To draw a circle using Cartesian coordinate system 1. Considering two points x and y on the x-axis and y-axis which meet at (x,y), this produces a right angle triangle with base of length x and height y. -
On Euclidean Distance Matrices and Spherical Configurations
On Euclidean Distance Matrices and Spherical Configurations. A.Y. Alfakih Dept of Math and Statistics University of Windsor DIMACS Workshop on Optimization in Distance Geometry June 26-28, 2019 Outline I Survey of EDMs: I Characterizations. I Properties. I Classes of EDMs: Spherical and Nonspherical. I EDM Inverse Eigenvalue Problem. I Spherical Configurations I Yielding and Nonyielding Entries. I Unit Spherical EDMs which differ in 1 entry. I Two-Distance Sets. I The dimension of the affine span of the generating points of an EDM D is called the embedding dimension of D. I An EDM D is spherical if its generating points lie on a hypersphere. Otherwise, it is nonspherical. Definition 1 n I An n × n matrix D is an EDM if there exist points p ;:::; p in some Euclidean space such that: i j 2 dij = jjp − p jj for all i; j = 1;:::; n: I An EDM D is spherical if its generating points lie on a hypersphere. Otherwise, it is nonspherical. Definition 1 n I An n × n matrix D is an EDM if there exist points p ;:::; p in some Euclidean space such that: i j 2 dij = jjp − p jj for all i; j = 1;:::; n: I The dimension of the affine span of the generating points of an EDM D is called the embedding dimension of D. Definition 1 n I An n × n matrix D is an EDM if there exist points p ;:::; p in some Euclidean space such that: i j 2 dij = jjp − p jj for all i; j = 1;:::; n: I The dimension of the affine span of the generating points of an EDM D is called the embedding dimension of D. -
1 Euclidean Vector Spaces
1 Euclidean Vector Spaces 1.1 Euclidean n-space In this chapter we will generalize the ¯ndings from last chapters for a space with n dimensions, called n-space. De¯nition 1 If n 2 Nnf0g, then an ordered n-tuple is a sequence of n numbers in R:(a1; a2; : : : ; an). The set of all ordered n-tuples is called n-space and is denoted by Rn. The elements in Rn can be perceived as points or vectors, similar to what we have done in 2- and 3-space. (a1; a2; a3) was used to indicate the components of a vector or the coordinates of a point. De¯nition 2 n Two vectors u = (u1; u2; : : : ; un) and v = (v1; v2; : : : ; vn) in R are called equal if u1 = v1; u2 = v2; : : : ; un = vn The sum u + v is de¯ned by u + v = (u1 + v1; u2 + v2; : : : un + vn) If k 2 R the scalar multiple of u is de¯ned by ku = (ku1; ku2; : : : ; kun) These operations are called the standard operations in Rn. De¯nition 3 The zero vector 0 in Rn is de¯ned by 0 = (0; 0;:::; 0) n For u = (u1; u2; : : : ; un) 2 R the negative of u is de¯ned by ¡u = (¡u1; ¡u2;:::; ¡un) The di®erence between two vectors u; v 2 Rn is de¯ned by u ¡ v = u + (¡v) Theorem 1 If u; v and w in Rn and k; l 2 R, then (a) u + v = v + u (b) (u + v) + w = u + (v + w) 1 (c) u + 0 = u (d) u + (¡u) = 0 (e) k(lu) = (kl)u (f) k(u + v) = ku + kv (g) (k + l)u = ku + lu (h) 1u) = u This theorem permits us to manipulate equations without writing them in component form. -
Math 135 Notes Parallel Postulate .Pdf
Euclidean verses Non Euclidean Geometries Euclidean Geometry Euclid of Alexandria was born around 325 BC. Most believe that he was a student of Plato. Euclid introduced the idea of an axiomatic geometry when he presented his 13 chapter book titled The Elements of Geometry. The Elements he introduced were simply fundamental geometric principles called axioms and postulates. The most notable are Euclid’s five postulates which are stated in the next passage. 1) Any two points can determine a straight line. 2) Any finite straight line can be extended in a straight line. 3) A circle can be determined from any center and any radius. 4) All right angles are equal. 5) If two straight lines in a plane are crossed by a transversal, and sum the interior angle of the same side of the transversal is less than two right angles, then the two lines extended will intersect. According to Euclid, the rest of geometry could be deduced from these five postulates. Euclid’s fifth postulate, often referred to as the Parallel Postulate, is the basis for what are called Euclidean Geometries or geometries where parallel lines exist. There is an alternate version to Euclid fifth postulate which is usually stated as “Given a line and a point not on the line, there is one and only one line that passed through the given point that is parallel to the given line. This is a short version of the Parallel Postulate called Fairplay’s Axiom which is named after the British math teacher who proposed to replace the axiom in all of the schools textbooks. -
Course Notes Geometric Algebra for Computer Graphics∗ SIGGRAPH 2019
Course notes Geometric Algebra for Computer Graphics∗ SIGGRAPH 2019 Charles G. Gunn, Ph. D.y ∗Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s). SIGGRAPH '19 Courses, July 28 - August 01, 2019, Los Angeles, CA, USA ACM 978-1-4503-6307-5/19/07. 10.1145/3305366.3328099 yAuthor's address: Raum+Gegenraum, Brieselanger Weg 1, 14612 Falkensee, Germany, Email: [email protected] 1 Contents 1 The question 4 2 Wish list for doing geometry 4 3 Structure of these notes 5 4 Immersive introduction to geometric algebra 6 4.1 Familiar components in a new setting . .6 4.2 Example 1: Working with lines and points in 3D . .7 4.3 Example 2: A 3D Kaleidoscope . .8 4.4 Example 3: A continuous 3D screw motion . .9 5 Mathematical foundations 11 5.1 Historical overview . 11 5.2 Vector spaces . 11 5.3 Normed vector spaces . 12 5.4 Sylvester signature theorem . 12 5.5 Euclidean space En ........................... 13 5.6 The tensor algebra of a vector space . 13 5.7 Exterior algebra of a vector space . 14 5.8 The dual exterior algebra . 15 5.9 Projective space of a vector space .