Talk at the Niels Bohr Archive June 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Report 2001
Niels Bohr Archive: Annual Report 2001 Staff: Director Finn Aaserud Academic Assistant Felicity Pors Librarian/Secretary Anne Lis Rasmussen Conservator Judith Hjartbro Scientific Associates Aage Bohr Jørgen Kalckar Hilde Levi Knud Max Møller Erik Rüdinger Board of directors: For the Vice-Chancellor of the University of Copenhagen Henrik Jeppesen For the Niels Bohr Institute Andrew D. Jackson, chair David Favrholdt (until 6 October) For the Royal Danish Academy of Jørgen Christensen Dalsgaard Sciences and Letters (from 7 October) For the Minister of Science, Kirsti Andersen Technology and Development Anne Bohr Dawids (until 6 October) For the family of Niels Bohr Vilhelm Bohr (from 7 October) General remarks The Niels Bohr Archive (NBA) is a repository of primary material for the history of modern physics, pertaining in particular to the early development of quantum mechanics and the life and career of Niels Bohr. Although the NBA has existed since shortly after Bohr's death in 1962, its future was only secured at the centennial of Bohr's birth in 1985, when a deed of gift from Bohr's wife, Margrethe, provided the opportunity to establish the NBA as an independent not-for-profit institution. Since 1985, the NBA has had its own board of directors and has received a fixed annual sum for running expenses from the Danish Ministry of Education (1985-1998 and 2000-2001), the Ministry of Research (1998-2000) and the Ministry of Science, Technology and Development (from 2001); it has also made ample use of its privilege to apply for project support from private sources. The core of the collections comprises Bohr's scientific correspondence (6000 letters and drafts) and manuscripts (500 units). -
Some Aspects of Quantum Theory
SOME ASPECTS OF QUANTUM THEORY John Scales Avery August 22, 2020 INTRODUCTION1 I hope that this book will be of interest to students and researchers in mathematics, physics and theoretical chemistry. The first few chapters can be read with ease by anyone with a knowledge of calculus and differential equations. However, some later chapters, and most of the appendices, are more demanding.. Chapter 10 deals with resonance energy transfer and especially with the relativistic treatment of this phenomenon. My fascination with this topic dates back to my Ph.D. thesis work in the early 1960’s at Imperial College, which was then a part of the University of London. I had previously been working at the laboratory of Prof. Albert Szent-Gy¨orgyiand the Marine Bi- ological Laboratory at Woods Hole, Massachusetts. The problem on which we had been working was a quantum mechanical treatment of the primary process in photosynthesis, where a photon is absorbed, and its energy stabi- lized. Resonance energy transfer plays a large role in this process2. When I started my Ph.D. work in London, I decided to see whether relativistic corrections made a difference3. My calculations4 showed that while the usual non-relativistic treatment leads to transition probabilities that fall off as 1/R6, the calculated relativistic transition probabilities had a long-range component that fell off as 1/R2. Thus,if we imagine a very large sphere around an excited atom of molecule, the probability that the excitation energy will be transferred to one or another of the acceptors is independent of the size of the sphere! Is this a process that competes with spontaneous photon emission? Or is it an alternative way of treating the joint process of emission and absorption?5 Today, sixty years later, I continue to be fascinated by this question. -
THE NIELS BOHR ARCHIVE Annual Report 1994 Staff Director Finn Aaserud Secretary Anne Lis Rasmussen Preservation Judith Hjartbro
THE NIELS BOHR ARCHIVE Annual Report 1994 Staff Director Finn Aaserud Secretary Anne Lis Rasmussen Preservation Judith Hjartbro (part-time) Programming Felicity Pors Miscellaneous Martin Sørensen (part-time) Claus Wøller Nordbo (temporary) Scientific Staff Hilde Levi Abraham Pais (also at Rockefeller University, New York) Board of directors For the Vice-Chancellor of the University of Copenhagen Ove Nathan For the Niels Bohr Institute Aage Winther (chair) For the Royal Danish Society of Sciences and Letters David Favrholdt For the Minister of Education Birgit Andersen For the family of Niels Bohr Christian Bohr General remarks The Niels Bohr Archive (NBA) is a repository of primary material for the history of modern physics, pertaining in particular to the early development of quantum mechan- ics and the life and career of Niels Bohr. The NBA has existed since shortly after Bohr's death in 1962. How- ever, its future was only secured at the centennial of Bohr's birth in 1985, when a deed of gift from Bohr's wife, Margrethe, provided the opportunity to establish the NBA as an independent non-profit institution. The NBA has now its own board of directors and receives a fixed annual sum for running expenses from the Danish Ministry of Education as well as project support from private sources. Having housed the NBA from the out- set, in 1990 the Niels Bohr Institute supplied improved and expanded quarters. The core of the collections comprises Bohr's scientific correspondence (6000 letters and drafts) and manuscripts (500 units). This material was catalogued and micro- filmed in the early 1960s as part of the Archive for His- tory of Quantum Physics (AHQP), the work for which was sponsored by the American Philosophical Society and the American Physical Society. -
Historical Sites of Physical Science in Copenhagen
The Physical Tourist. A Science Guide for the Traveler edited by John S. Rigden and Roger H. Stuewer © 2009 Birkhäuser Verlag Basel, Switzerland Historical Sites of Physical Science in Copenhagen Felicity Pors and Finn Aaserud* Copenhagen Each section below describes a particular place in the Danish capital. A map of Copen- hagen can be found at the web site <www.nbi.dk/how-to-get-here.html>. The map is divided into four sections, I–IV, each of which consists of particular horizontal coordi- nates A…, and particular vertical coordinates 1…, as follows: I (A–C, 1–4); II (D–F, 1–4); III (A–C, 5–8); and IV (D–F, 5–8). The coordinates of the sites described in the sections below are given in parentheses at the end of each section heading.A map with a street index can be obtained free of charge at the main railway station, the airport information desk, and tourist offices. The web site <www.aok.dk> provides useful gen- eral information about Copenhagen. Bredgade 62 (F4) Our physical tour of Copenhagen starts at Bredgade 62, the building of the former Kirurgisk Akademi (Academy of Surgery), which was established in 1785 and com- pleted in 1787. It became the residence of Christian Bohr (1855–1911), when he moved into Bredgade 62 (figure 1) in 1886 as senior lecturer at the University of Copenhagen; he was appointed professor of physiology in 1890. Since 1948 Bredgade 62 has been the home of the Museum of Medical History (recently renamed Medical Museion; see web site <www.museion.ku.dk> for open- ing hours and other information), which is part of the University of Copenhagen’s Institute of Public Health. -
Some Aspects of Quantum Theory
SOME ASPECTS OF QUANTUM THEORY John Scales Avery August 22, 2020 INTRODUCTION1 I hope that this book will be of interest to students and researchers in mathematics, physics and theoretical chemistry. The first few chapters can be read with ease by anyone with a knowledge of calculus and differential equations. However, some later chapters, and most of the appendices, are more demanding.. Chapter 10 deals with resonance energy transfer and especially with the relativistic treatment of this phenomenon. My fascination with this topic dates back to my Ph.D. thesis work in the early 1960’s at Imperial College, which was then a part of the University of London. I had previously been working at the laboratory of Prof. Albert Szent-Gy¨orgyiand the Marine Bi- ological Laboratory at Woods Hole, Massachusetts. The problem on which we had been working was a quantum mechanical treatment of the primary process in photosynthesis, where a photon is absorbed, and its energy stabi- lized. Resonance energy transfer plays a large role in this process2. When I started my Ph.D. work in London, I decided to see whether relativistic corrections made a difference3. My calculations4 showed that while the usual non-relativistic treatment leads to transition probabilities that fall off as 1/R6, the calculated relativistic transition probabilities had a long-range component that fell off as 1/R2. Thus,if we imagine a very large sphere around an excited atom of molecule, the probability that the excitation energy will be transferred to one or another of the acceptors is independent of the size of the sphere! Is this a process that competes with spontaneous photon emission? Or is it an alternative way of treating the joint process of emission and absorption?5 Today, sixty years later, I continue to be fascinated by this question.